Dynamics of two species predator-prey model with spatially nonhomogeneous diffusion strategy
In this paper, we investigate a Holling type-II predator-prey system with spatially nonhomogeneous diffusion strategy. By employing the methods of the implicit function theorem, eigenvalue theory and bifurcation theory, we analyze the stability/instability of the positive steady state and explore th...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 548; číslo 2; s. 129412 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
15.08.2025
|
| Predmet: | |
| ISSN: | 0022-247X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we investigate a Holling type-II predator-prey system with spatially nonhomogeneous diffusion strategy. By employing the methods of the implicit function theorem, eigenvalue theory and bifurcation theory, we analyze the stability/instability of the positive steady state and explore the existence of a Hopf bifurcation when the diffusion rate is large. Furthermore, when the driven diffusion functions Q1(x)=eqm(x) and Q2(x)≡1, we detailed discuss how the parameter q of the density dependent diffusion Q1(x) affect the occurrence of Hopf bifurcations and the values of Hopf bifurcations. |
|---|---|
| ISSN: | 0022-247X |
| DOI: | 10.1016/j.jmaa.2025.129412 |