On the density of CV0(X)⊗A in CV0(X,A)
Let X be a completely regular Hausdorff space and V a Nachbin family on X. For a locally convex algebra A, let CV0(X,A) be the algebra of all weighted vector-valued continuous functions which vanish at infinity with the topology given by the uniform seminorms induced by V. In this paper we present s...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 530; číslo 2; s. 127699 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.02.2024
|
| Témata: | |
| ISSN: | 0022-247X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let X be a completely regular Hausdorff space and V a Nachbin family on X. For a locally convex algebra A, let CV0(X,A) be the algebra of all weighted vector-valued continuous functions which vanish at infinity with the topology given by the uniform seminorms induced by V. In this paper we present some sufficient conditions under which CV0(X)⊗A is a dense subspace of CV0(X,A) or isomorphic to it. |
|---|---|
| ISSN: | 0022-247X |
| DOI: | 10.1016/j.jmaa.2023.127699 |