The Kreĭn-Šmul'jan theorem revisited
We present a generalization of the Kreĭn-Šmul'jan theorem involving several operators: Given bounded selfadjoint operators A,B1,…,Bm acting on a Hilbert space H, we provide sufficient conditions to determine whether there are λ1,…,λm∈R such that A+∑i=1mλiBi is a positive semidefinite operator....
Uloženo v:
| Vydáno v: | Linear algebra and its applications Ročník 727; s. 163 - 177 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.12.2025
|
| Témata: | |
| ISSN: | 0024-3795 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a generalization of the Kreĭn-Šmul'jan theorem involving several operators: Given bounded selfadjoint operators A,B1,…,Bm acting on a Hilbert space H, we provide sufficient conditions to determine whether there are λ1,…,λm∈R such that A+∑i=1mλiBi is a positive semidefinite operator. |
|---|---|
| ISSN: | 0024-3795 |
| DOI: | 10.1016/j.laa.2025.08.006 |