The Kreĭn-Šmul'jan theorem revisited

We present a generalization of the Kreĭn-Šmul'jan theorem involving several operators: Given bounded selfadjoint operators A,B1,…,Bm acting on a Hilbert space H, we provide sufficient conditions to determine whether there are λ1,…,λm∈R such that A+∑i=1mλiBi is a positive semidefinite operator....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Linear algebra and its applications Ročník 727; s. 163 - 177
Hlavní autori: Gonzalez Zerbo, Santiago, Maestripieri, Alejandra, Martínez Pería, Francisco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 15.12.2025
Predmet:
ISSN:0024-3795
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present a generalization of the Kreĭn-Šmul'jan theorem involving several operators: Given bounded selfadjoint operators A,B1,…,Bm acting on a Hilbert space H, we provide sufficient conditions to determine whether there are λ1,…,λm∈R such that A+∑i=1mλiBi is a positive semidefinite operator.
ISSN:0024-3795
DOI:10.1016/j.laa.2025.08.006