The Kreĭn-Šmul'jan theorem revisited

We present a generalization of the Kreĭn-Šmul'jan theorem involving several operators: Given bounded selfadjoint operators A,B1,…,Bm acting on a Hilbert space H, we provide sufficient conditions to determine whether there are λ1,…,λm∈R such that A+∑i=1mλiBi is a positive semidefinite operator....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 727; S. 163 - 177
Hauptverfasser: Gonzalez Zerbo, Santiago, Maestripieri, Alejandra, Martínez Pería, Francisco
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.12.2025
Schlagworte:
ISSN:0024-3795
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a generalization of the Kreĭn-Šmul'jan theorem involving several operators: Given bounded selfadjoint operators A,B1,…,Bm acting on a Hilbert space H, we provide sufficient conditions to determine whether there are λ1,…,λm∈R such that A+∑i=1mλiBi is a positive semidefinite operator.
ISSN:0024-3795
DOI:10.1016/j.laa.2025.08.006