A fast computational Gauss–Seidel type iPALM algorithm using an incremental aggregated gradient strategy for weakly convex composite optimization problems with application in image processing

In this paper, we propose a Gauss–Seidel type inertial proximal alternating linearized minimization method with incremental aggregated gradient (IAG-GiPALM) for solving a class of nonconvex and nonsmooth composite optimization problems, whose objective function is the sum of a finite number of smoot...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 474; s. 116973
Hlavní autori: Jia, Zehui, Hou, Junru, Dong, Ping, Liu, Zhiyu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2026
Predmet:
ISSN:0377-0427
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we propose a Gauss–Seidel type inertial proximal alternating linearized minimization method with incremental aggregated gradient (IAG-GiPALM) for solving a class of nonconvex and nonsmooth composite optimization problems, whose objective function is the sum of a finite number of smooth nonconvex functions and nonsmooth weakly convex functions. This new algorithm inherits the advantages of the Gauss–Seidel type inertial proximal alternating linearized minimization method (GiPALM) and the incremental aggregated proximal method. Under some mild conditions, we prove that any limit point of the sequence generated by IAG-GiPALM is a critical point of the optimization problems. Moreover, we establish the global convergence and convergence rate of the algorithm under the Kurdyka-Łojasiewicz property. In addition, some numerical results are conducted to demonstrate the efficiency of the new method.
ISSN:0377-0427
DOI:10.1016/j.cam.2025.116973