Improving photoelectric perfomance with hydrogen on Al-doped ZnO

This paper gives a comprehensive analysis of the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO), aiming to enhance the photoelectric property performances of ZnO as transparent conductive oxide (TCO), using density functional theory (DFT). Results showed that the lattice distorti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Materials chemistry and physics Ročník 291; s. 126680
Hlavní autori: Li, Lin, Zhang, Zhang, Wang, Jianpei, Yang, Ping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.11.2022
Predmet:
ISSN:0254-0584, 1879-3312
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper gives a comprehensive analysis of the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO), aiming to enhance the photoelectric property performances of ZnO as transparent conductive oxide (TCO), using density functional theory (DFT). Results showed that the lattice distortion of HAZO is smaller than that of AZO due to the repulsion of Al ions by H ions. Analysis of the electronic structure revealed that the carrier mobility of HAZO is higher than that of AZO due to the increased number of electrons at the conduction band minimum. Moreover, the conductivity of HAZO increased by 86% compared to AZO. The transmittance of HAZO is much higher than pure ZnO and AZO in the visible region and even reaching up to 95% above 600 nm. The current findings provide a theoretical basis for the possibility of co-doping Al–H with ZnO to promote its development in photovoltaic devices. [Display omitted] •We investigated the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO).•We detect that the lattice distortion of HAZO is small due to the repulsion of Al ions by H ions.•We detect that the conductivity of HAZO increased by 86% compared to AZO.•We detect that the transmittance of HAZO can reach up to 95% above 600 nm in the visible region.•It implies the possibility of co-doping Al–H with ZnO to promote the photovoltaic property.
ISSN:0254-0584
1879-3312
DOI:10.1016/j.matchemphys.2022.126680