Secure the Clones

Exchanging mutable data objects with untrusted code is a delicate matter because of the risk of creating a data space that is accessible by an attacker. Consequently, secure programming guidelines for Java stress the importance of using defensive copying before accepting or handing out references to...

Full description

Saved in:
Bibliographic Details
Published in:Logical methods in computer science Vol. 8, Issue 2; no. 2
Main Authors: Jensen, Thomas, Kirchner, Florent, Pichardie, David
Format: Journal Article
Language:English
Published: Logical Methods in Computer Science Association 31.05.2012
Logical Methods in Computer Science e.V
Subjects:
ISSN:1860-5974, 1860-5974
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exchanging mutable data objects with untrusted code is a delicate matter because of the risk of creating a data space that is accessible by an attacker. Consequently, secure programming guidelines for Java stress the importance of using defensive copying before accepting or handing out references to an internal mutable object. However, implementation of a copy method (like clone()) is entirely left to the programmer. It may not provide a sufficiently deep copy of an object and is subject to overriding by a malicious sub-class. Currently no language-based mechanism supports secure object cloning. This paper proposes a type-based annotation system for defining modular copy policies for class-based object-oriented programs. A copy policy specifies the maximally allowed sharing between an object and its clone. We present a static enforcement mechanism that will guarantee that all classes fulfil their copy policy, even in the presence of overriding of copy methods, and establish the semantic correctness of the overall approach in Coq. The mechanism has been implemented and experimentally evaluated on clone methods from several Java libraries.
ISSN:1860-5974
1860-5974
DOI:10.2168/LMCS-8(2:5)2012