Algebraic aspects of two-dimensional convolutional codes

Two-dimensional (2D) codes are introduced as linear shift-invariant spaces of admissible signals on the discrete plane. Convolutional and, in particular, basic codes are characterized both in terms of their internal properties and by means of their input-output representations. The algebraic structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 40; H. 4; S. 1068 - 1082
Hauptverfasser: Fornasini, E., Valcher, M.E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.1994
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional (2D) codes are introduced as linear shift-invariant spaces of admissible signals on the discrete plane. Convolutional and, in particular, basic codes are characterized both in terms of their internal properties and by means of their input-output representations. The algebraic structure of the class of all encoders that correspond to a given convolutional code is investigated and the possibility of obtaining 2D decoders, free from catastrophic errors, as,veil as efficient syndrome decoders is considered. Some aspects of the state space implementation of 2D encoders and decoders via (finite memory) 2D system are discussed.< >
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/18.335967