Algebraic aspects of two-dimensional convolutional codes

Two-dimensional (2D) codes are introduced as linear shift-invariant spaces of admissible signals on the discrete plane. Convolutional and, in particular, basic codes are characterized both in terms of their internal properties and by means of their input-output representations. The algebraic structu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on information theory Ročník 40; číslo 4; s. 1068 - 1082
Hlavní autori: Fornasini, E., Valcher, M.E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.07.1994
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9448, 1557-9654
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Two-dimensional (2D) codes are introduced as linear shift-invariant spaces of admissible signals on the discrete plane. Convolutional and, in particular, basic codes are characterized both in terms of their internal properties and by means of their input-output representations. The algebraic structure of the class of all encoders that correspond to a given convolutional code is investigated and the possibility of obtaining 2D decoders, free from catastrophic errors, as,veil as efficient syndrome decoders is considered. Some aspects of the state space implementation of 2D encoders and decoders via (finite memory) 2D system are discussed.< >
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/18.335967