Characterizing Generalized Derivatives of Set-Valued Maps: Extending the Tangential and Normal Approaches

For a set-valued map, we characterize, in terms of its (unconvexified or convexified) graphical derivatives near the point of interest, positively homogeneous maps that are generalized derivatives in the sense of [C. H. J. Pang, Math. Oper. Res., 36 (2011), pp. 377--397]. This result generalizes the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on control and optimization Ročník 51; číslo 1; s. 145 - 171
Hlavný autor: Jeffrey Pang, C. H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
Predmet:
ISSN:0363-0129, 1095-7138
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:For a set-valued map, we characterize, in terms of its (unconvexified or convexified) graphical derivatives near the point of interest, positively homogeneous maps that are generalized derivatives in the sense of [C. H. J. Pang, Math. Oper. Res., 36 (2011), pp. 377--397]. This result generalizes the Aubin criterion in [A. L. Dontchev, M. Quincampoix, and N. Zlateva, J. Convex Anal., 3 (2006), pp. 45--63]. A second characterization of these generalized derivatives is easier to check in practice, especially in the finite dimensional case. Finally, the third characterization in terms of limiting normal cones and coderivatives generalizes the Mordukhovich criterion in the finite dimensional case. The convexified coderivative has a bijective relationship with the set of possible generalized derivatives. We conclude by illustrating a few applications of our result. [PUBLICATION ABSTRACT]
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0363-0129
1095-7138
DOI:10.1137/110840467