Inequalities and Inverse Theorems in Restricted Rational Approximation Theory
The following lemma, part a) due to S. N. Bernstein and part b) due to A. A. Markov, is fundamental to the proofs of many inverse theorems in polynomial approximation theory. LEMMA 1. [2, p. 62 and p. 67] Let ∏n denote the real polynomials of degree at most n. Let p ∈ ∏n, then a) b) From the lemma o...
Gespeichert in:
| Veröffentlicht in: | Canadian journal of mathematics Jg. 32; H. 2; S. 354 - 361 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge, UK
Cambridge University Press
01.04.1980
|
| ISSN: | 0008-414X, 1496-4279 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The following lemma, part a) due to S. N. Bernstein and part b) due to A. A. Markov, is fundamental to the proofs of many inverse theorems in polynomial approximation theory. LEMMA 1. [2, p. 62 and p. 67] Let ∏n denote the real polynomials of degree at most n. Let p ∈ ∏n, then
a)
b)
From the lemma one can deduce, for example: THEOREM 1. Iƒ there is a sequence of polynomials pn
∈ ∏n and a δ > 0 so that ‖f – pn
‖[a, b] ≧ A/n
k + δ then f is k times continuously differentiate on (a, b).
We shall refer to inequalities, such as those of Lemma 1 that bound the derivative r′ of a rational function of degree n in terms of its supremum norm ‖r‖[a, b] and n, as Bernstein-type inequalities. |
|---|---|
| ISSN: | 0008-414X 1496-4279 |
| DOI: | 10.4153/CJM-1980-028-5 |