A Posteriori Guessing Random Additive Noise for Lossless Source Coding With Side Information

We propose a maximum a posteriori (MAP)-approaching decoder, namely a posteriori guessing random additive noise decoding (AP-GRAND), which generalizes the existing maximum likelihood (ML)-approaching guessing random additive noise decoding (GRAND) to non-uniform sources. This decoder is notably usef...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE communications letters Ročník 29; číslo 10; s. 2361 - 2365
Hlavní autoři: Camino Trevino, Javier, Benammar, Meryem, Roque, Damien
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-7798, 1558-2558
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a maximum a posteriori (MAP)-approaching decoder, namely a posteriori guessing random additive noise decoding (AP-GRAND), which generalizes the existing maximum likelihood (ML)-approaching guessing random additive noise decoding (GRAND) to non-uniform sources. This decoder is notably useful for lossless source coding with side information (LSCSI) problems involving non-uniform binary sources. The proposed decoder is universal and can be applied to all channel codes. We illustrate the performance of AP-GRAND for short-blocklength Polar, BCH, and LDPC codes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2025.3595492