A Posteriori Guessing Random Additive Noise for Lossless Source Coding With Side Information

We propose a maximum a posteriori (MAP)-approaching decoder, namely a posteriori guessing random additive noise decoding (AP-GRAND), which generalizes the existing maximum likelihood (ML)-approaching guessing random additive noise decoding (GRAND) to non-uniform sources. This decoder is notably usef...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE communications letters Ročník 29; číslo 10; s. 2361 - 2365
Hlavní autori: Camino Trevino, Javier, Benammar, Meryem, Roque, Damien
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1089-7798, 1558-2558
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We propose a maximum a posteriori (MAP)-approaching decoder, namely a posteriori guessing random additive noise decoding (AP-GRAND), which generalizes the existing maximum likelihood (ML)-approaching guessing random additive noise decoding (GRAND) to non-uniform sources. This decoder is notably useful for lossless source coding with side information (LSCSI) problems involving non-uniform binary sources. The proposed decoder is universal and can be applied to all channel codes. We illustrate the performance of AP-GRAND for short-blocklength Polar, BCH, and LDPC codes.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2025.3595492