FAS Meets OFDM: Enabling Wideband 5G NR
Fluid antenna system (FAS) is an emerging technology that uses the new form of shape- and position-reconfigurable antennas to empower the physical layer for wireless communications. Prior studies on FAS were however limited to narrowband channels. Motivated by this, this paper addresses the integrat...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on communications Jg. 73; H. 11; S. 12884 - 12898 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.11.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0090-6778, 1558-0857 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Fluid antenna system (FAS) is an emerging technology that uses the new form of shape- and position-reconfigurable antennas to empower the physical layer for wireless communications. Prior studies on FAS were however limited to narrowband channels. Motivated by this, this paper addresses the integration of FAS in the fifth generation (5G) orthogonal frequency division multiplexing (OFDM) framework to address the challenges posed by wideband communications. We propose the framework of the wideband FAS-OFDM system that includes a novel port selection matrix. Then we derive the achievable rate expression and design the adaptive modulation and coding (AMC) scheme based on the rate. Extensive link-level simulation results demonstrate striking improvements of FAS in the wideband channels, underscoring the potential of FAS in future wireless communications. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0090-6778 1558-0857 |
| DOI: | 10.1109/TCOMM.2025.3591751 |