On the complexity of nucleolus computation for bipartite b-matching games
We explore the complexity of nucleolus computation in b-matching games on bipartite graphs. We show that computing the nucleolus of a simple b-matching game is NP-hard when b≡3 even on bipartite graphs of maximum degree 7. We complement this with partial positive results in the special case where b...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 998; s. 114476 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2024
|
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We explore the complexity of nucleolus computation in b-matching games on bipartite graphs. We show that computing the nucleolus of a simple b-matching game is NP-hard when b≡3 even on bipartite graphs of maximum degree 7. We complement this with partial positive results in the special case where b values are bounded by 2. In particular, we describe an efficient algorithm when a constant number of vertices satisfy bv=2 as well as an efficient algorithm for computing the non-simple b-matching nucleolus when b≡2.
•We explore the complexity of nucleolus computation in b-matching games on bipartite graphs.•Computing the nucleolus of a simple b-matching game is NP-hard when b=3 even on bipartite graphs of maximum degree 7.•We complement this with partial positive results in the special case where b values are bounded by 2.•In particular, we describe an efficient algorithm when a constant number of vertices satisfy bv=2.•Also an efficient algorithm for computing the non-simple b-matching nucleolus when b=2. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2024.114476 |