Strongly Polynomial FPTASes for Monotone Dynamic Programs

In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone dynamic programs. While some ad-hoc SFPTASes for specific problems are already known, this is the first framework yielding such SFPTASes. In...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 84; číslo 10; s. 2785 - 2819
Hlavní autori: Alon, Tzvi, Halman, Nir
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2022
Springer Nature B.V
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone dynamic programs. While some ad-hoc SFPTASes for specific problems are already known, this is the first framework yielding such SFPTASes. In addition, it is possible to use our algorithm to get efficient (non strongly polynomial) FPTASes. Our results are derived by improving former (non strongly polynomial) FPTASes which were designed via the method of K -approximation sets and functions. We demonstrate our SFPTAS framework on five application problems, namely, 0/1 Knapsack, counting 0/1 Knapsack, Counting s - t paths, Mobile agent routing and Counting n -tuples, for the last problem we get the fastest SFPTAS known to date. In addition, we use our algorithm to get the fastest (non strongly polynomial) FPTASes for the following other three application problems: Stochastic ordered knapsack, Bi-criteria path problem with maximum survival probability and Minimizing the makespan of deteriorating jobs.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-022-00954-8