Lower bounds for decision problems in imaginary, norm-Euclidean quadratic integer rings
We prove lower bounds for the complexity of deciding several relations in imaginary, norm-Euclidean quadratic integer rings, where computations are assumed to be relative to a basis of piecewise-linear operations. In particular, we establish lower bounds for deciding coprimality in these rings, whic...
Uloženo v:
| Vydáno v: | Journal of symbolic computation Ročník 44; číslo 6; s. 683 - 699 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.06.2009
|
| Témata: | |
| ISSN: | 0747-7171, 1095-855X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove lower bounds for the complexity of deciding several relations in imaginary, norm-Euclidean quadratic integer rings, where computations are assumed to be relative to a basis of piecewise-linear operations. In particular, we establish lower bounds for deciding coprimality in these rings, which yield lower bounds for gcd computations. In each imaginary, norm-Euclidean quadratic integer ring, a known binary-like gcd algorithm has complexity that is quadratic in our lower bound. |
|---|---|
| ISSN: | 0747-7171 1095-855X |
| DOI: | 10.1016/j.jsc.2008.11.001 |