Stability and Neimark–Sacker Bifurcation of Certain Mixed Monotone Rational Second-Order Difference Equation

This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation with quadratic terms. The equation’s corresponding associated map is always decreasing for the second variable and can be either decreasing or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems Jg. 20; H. 3
Hauptverfasser: Nurkanović, Zehra, Nurkanović, Mehmed, Garić-Demirović, Mirela
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.11.2021
Springer Nature B.V
Schlagworte:
ISSN:1575-5460, 1662-3592
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation with quadratic terms. The equation’s corresponding associated map is always decreasing for the second variable and can be either decreasing or increasing for the first variable depending on the corresponding parametric values. In some parametric space regions, we prove that the unique positive equilibrium point’s local asymptotic stability implies global asymptotic stability. Our main tool for studying this equation’s global dynamics is the determination of invariant interval and use so-called “m–M” theorems and semi-cycle analysis. Also, we show that the considered equation exhibits Neimark–Sacker bifurcation under certain conditions.
AbstractList This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation with quadratic terms. The equation’s corresponding associated map is always decreasing for the second variable and can be either decreasing or increasing for the first variable depending on the corresponding parametric values. In some parametric space regions, we prove that the unique positive equilibrium point’s local asymptotic stability implies global asymptotic stability. Our main tool for studying this equation’s global dynamics is the determination of invariant interval and use so-called “m–M” theorems and semi-cycle analysis. Also, we show that the considered equation exhibits Neimark–Sacker bifurcation under certain conditions.
ArticleNumber 75
Author Nurkanović, Zehra
Garić-Demirović, Mirela
Nurkanović, Mehmed
Author_xml – sequence: 1
  givenname: Zehra
  orcidid: 0000-0002-0917-8433
  surname: Nurkanović
  fullname: Nurkanović, Zehra
  organization: Department of Mathematics, University of Tuzla
– sequence: 2
  givenname: Mehmed
  orcidid: 0000-0003-0202-0390
  surname: Nurkanović
  fullname: Nurkanović, Mehmed
  email: nurkanm@yahoo.com
  organization: Department of Mathematics, University of Tuzla
– sequence: 3
  givenname: Mirela
  surname: Garić-Demirović
  fullname: Garić-Demirović, Mirela
  organization: Department of Mathematics, University of Tuzla
BookMark eNp9kElOAzEQRS0UJMJwAVaWWBs8tN2dJYQwSAwSgbXluMvISbCD7Uiw4w7ckJPQJEhILLKqWvxX9f_fRb0QAyB0yOgxo7Q-yYyLShHKGaFUMkmqLdRnSnEi5ID3ul3WkshK0R20m_OUUsVrwfsojIuZ-Lkv79iEFt-BfzFp9vXxOTZ2BgmfebdM1hQfA44ODyEV4wO-9W_Q4tsYYumM4IeVwMzxGGwMLblPbceee-cgQbCAR6_LlWQfbTszz3DwO_fQ08XocXhFbu4vr4enN8TyalCIbSopoRGsmkhqlTG0ZVK4prW8Bl5PlFK2URIE59BI1wpbM9XIxgopXc2F2ENH67uLFF-XkIuexmXqHGbNpRKCVpzTTsXXKptizgmcXqSf_O-aUf3Tq173qrte9apXXXVQ8w-yvqzClWT8fDMq1mju_oRnSH-uNlDfF_SPeQ
CitedBy_id crossref_primary_10_18514_MMN_2025_4546
crossref_primary_10_1016_j_matcom_2025_07_013
crossref_primary_10_1080_10236198_2024_2378824
crossref_primary_10_3390_axioms13040280
Cites_doi 10.3390/math6010010
10.1007/s00285-006-0004-3
10.1155/2013/210846
10.1155/2018/1613709
10.1155/2018/7052935
10.1155/JIA.2005.127
10.1007/s12346-015-0148-x
10.1201/9781420035384
10.1002/mma.3722
10.3934/dcds.2006.14.549
10.22436/jnsa.010.07.11
10.1080/10236190802054126
10.3934/dcdsb.2018062
10.1186/1687-1847-2012-153
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
DBID AAYXX
CITATION
DOI 10.1007/s12346-021-00515-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1662-3592
ExternalDocumentID 10_1007_s12346_021_00515_4
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3J0
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DC1
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c249t-c8455e8314b50c6aa0d153f8dc27e27b666c865e322e85fd3c716858c355f7233
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687154200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1575-5460
IngestDate Mon Nov 24 04:11:02 EST 2025
Tue Nov 18 22:33:30 EST 2025
Sat Nov 29 06:14:54 EST 2025
Fri Feb 21 02:48:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Neimark–Sacker bifurcation
39A20
39A30
Stability
39A10
Difference equations
39A23
Normal form
65L20
Invariant curve
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-c8455e8314b50c6aa0d153f8dc27e27b666c865e322e85fd3c716858c355f7233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0917-8433
0000-0003-0202-0390
PQID 2563304220
PQPubID 2044188
ParticipantIDs proquest_journals_2563304220
crossref_primary_10_1007_s12346_021_00515_4
crossref_citationtrail_10_1007_s12346_021_00515_4
springer_journals_10_1007_s12346_021_00515_4
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Qualitative theory of dynamical systems
PublicationTitleAbbrev Qual. Theory Dyn. Syst
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Enciso, Sontag (CR1) 2006; 14
Kuznetsov (CR18) 1998
Kulenović, Merino (CR11) 2000
Thomson, Smith, Hunt, Rivard (CR23) 1993
Zhang, Zhou (CR26) 2018; 2018
Smith (CR22) 2006; 53
Jašarević Hrustić, Kulenović, Nurkanović (CR7) 2016; 15
Kulenović, Moranjkić, Nurkanović (CR14) 2016; 39
Grove, Ladas (CR6) 2005
Kulenović, Moranjkić, Nurkanović, Nurkanović (CR12) 2018; 2018
Kulenović, Moranjkić, Nurkanović (CR13) 2017; 10
Kalabušić, Nurkanović, Nurkanović (CR8) 2018; 6
Kulenović, Nurkanović (CR17) 2005; 2005
Robinson (CR20) 1995
Kostrov, Kudlak (CR9) 2016; 11
Garić-Demirović, Kulenović, Nurkanović (CR3) 2013; 2013
Kulenović, Nurkanović, Nurkanović (CR15) 2019; 15
Garić-Demirović, Hrustić, Nurkanović (CR2) 2019; 14
Zhong, Deng (CR25) 2018; 23
Moranjkić, Nurkanović (CR19) 2012; 2012
Garić-Demirović, Kulenović, Nurkanović (CR4) 2015; 13
Sedaghat (CR21) 2009; 15
Garić-Demirović, Nurkanović, Nurkanović (CR5) 2017; 12
Kulenović, Nurkanović (CR16) 2002; 11
Kulenović, Ladas (CR10) 2001
Wiggins (CR24) 2003
Y Kuznetsov (515_CR18) 1998
Z Zhang (515_CR26) 2018; 2018
EA Grove (515_CR6) 2005
Y Kostrov (515_CR9) 2016; 11
M Garić-Demirović (515_CR2) 2019; 14
HL Smith (515_CR22) 2006; 53
M Garić-Demirović (515_CR3) 2013; 2013
S Jašarević Hrustić (515_CR7) 2016; 15
MRS Kulenović (515_CR10) 2001
J Zhong (515_CR25) 2018; 23
MRS Kulenović (515_CR14) 2016; 39
MRS Kulenović (515_CR16) 2002; 11
M Garić-Demirović (515_CR5) 2017; 12
EG Enciso (515_CR1) 2006; 14
GG Thomson (515_CR23) 1993
S Kalabušić (515_CR8) 2018; 6
M Garić-Demirović (515_CR4) 2015; 13
S Robinson (515_CR20) 1995
S Moranjkić (515_CR19) 2012; 2012
H Sedaghat (515_CR21) 2009; 15
S Wiggins (515_CR24) 2003
MRS Kulenović (515_CR15) 2019; 15
MRS Kulenović (515_CR17) 2005; 2005
MRS Kulenović (515_CR13) 2017; 10
MRS Kulenović (515_CR11) 2000
MRS Kulenović (515_CR12) 2018; 2018
References_xml – year: 2000
  ident: CR11
  publication-title: Discrete Dynamical Systems and Difference Equations with Mathematica
– start-page: 303
  year: 1993
  end-page: 320
  ident: CR23
  article-title: A proposal for a treshold stock sizeand maximum fishing mortality rate
  publication-title: Risk Evaluation and Biological Reference Points for Fisheries Management
– volume: 6
  start-page: 13
  issue: 10
  year: 2018
  ident: CR8
  article-title: Global dynamics of certain mix monotone difference equation
  publication-title: Mathematics
  doi: 10.3390/math6010010
– volume: 53
  start-page: 747
  year: 2006
  end-page: 758
  ident: CR22
  article-title: Non-monotone systems decomposable into monotone systems with negative feedback
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-006-0004-3
– year: 2003
  ident: CR24
  publication-title: Introduction to Applied Nonlinear Dynamical Systems and Chaos
– volume: 2013
  start-page: 210846
  year: 2013
  ident: CR3
  article-title: Global dynamics of certain homogeneous second-order quadratic fractional difference equations
  publication-title: Sci. World J.
  doi: 10.1155/2013/210846
– volume: 2018
  start-page: 1613709
  year: 2018
  ident: CR26
  article-title: The bifurcation of two invariant closed curves in a discrete model
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2018/1613709
– year: 1995
  ident: CR20
  publication-title: Stability, Symbolic Dynamics and Chaos
– volume: 2018
  start-page: 7052935
  year: 2018
  ident: CR12
  article-title: Global asymptotic stability and Naimark–Sacker bifurcation of certain mix monotone difference equation
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2018/7052935
– volume: 2005
  start-page: 127
  issue: 2
  year: 2005
  end-page: 143
  ident: CR17
  article-title: Asymptotic behavior of a system of linear fractional difference equations
  publication-title: J. Inequal. Appl.
  doi: 10.1155/JIA.2005.127
– year: 2005
  ident: CR6
  publication-title: Periodicities in Nonlinear Difference Equations
– volume: 13
  start-page: 35
  issue: 1–2
  year: 2015
  end-page: 50
  ident: CR4
  article-title: Basins of attraction of certain homogeneous second order quadratic fractional difference equation
  publication-title: J. Concrete Appl. Math.
– volume: 15
  start-page: 283
  issue: 1
  year: 2016
  end-page: 307
  ident: CR7
  article-title: Global dynamics and bifurcations of certain second order rational difference equation with quadratic terms
  publication-title: Qual. Theory Dyn. Syst.
  doi: 10.1007/s12346-015-0148-x
– volume: 15
  start-page: 129
  issue: 28
  year: 2019
  end-page: 154
  ident: CR15
  article-title: Global dynamics of certain mix monotone difference equation via center manifold thepry and theory of monotone maps
  publication-title: Sarajevo J. Math.
– year: 2001
  ident: CR10
  publication-title: Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures
  doi: 10.1201/9781420035384
– volume: 39
  start-page: 2696
  year: 2016
  end-page: 2715
  ident: CR14
  article-title: Global dynamics and bifurcation of perturbed Sigmoid Beverton–Holt difference equation
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3722
– year: 1998
  ident: CR18
  publication-title: Elements of Applied Bifurcation Theory
– volume: 14
  start-page: 549
  year: 2006
  end-page: 578
  ident: CR1
  article-title: Global attractivity, I/O monotone small-gain theorems, and biological delay systems
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2006.14.549
– volume: 10
  start-page: 3477
  issue: 7
  year: 2017
  end-page: 3489
  ident: CR13
  article-title: Naimark–Sacker bifurcation of second order rational difference equation with quadratic terms
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.010.07.11
– volume: 14
  start-page: 149
  issue: 2
  year: 2019
  end-page: 178
  ident: CR2
  article-title: Stability and periodicity of certain homogeneous second-order fractional difference equation with quadratic terms
  publication-title: Adv. Dyn. Syst. Appl.
– volume: 15
  start-page: 215
  year: 2009
  end-page: 224
  ident: CR21
  article-title: Global behaviours of rational difference equations of orders two and three with quadratic terms
  publication-title: J. Diffe. Equ. Appl.
  doi: 10.1080/10236190802054126
– volume: 23
  start-page: 1581
  issue: 4
  year: 2018
  end-page: 1600
  ident: CR25
  article-title: Two codimension-two bifurcations of a second-order difference equation from macroeconomics
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2018062
– volume: 11
  start-page: 179
  issue: 2
  year: 2016
  end-page: 202
  ident: CR9
  article-title: On a second-order rational difference equation with a quadratic term
  publication-title: Int. J. Differ. Equ.
– volume: 12
  start-page: 27
  issue: 1
  year: 2017
  end-page: 53
  ident: CR5
  article-title: Stability, periodicity and Neimark–Sacker bifurcation of certain homogeneous fractional difference equation
  publication-title: Int. J. Differ. Equ.
– volume: 11
  start-page: 59
  issue: 1
  year: 2002
  end-page: 78
  ident: CR16
  article-title: Asymptotic behavior of a two dimensional linear fractional system of difference equations
  publication-title: Radovi Mat. (Sarajevo J. Math.)
– volume: 2012
  start-page: 153
  year: 2012
  ident: CR19
  article-title: Basins of attraction of certain rational anti-competitive system of difference equations in the plane
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2012-153
– volume: 6
  start-page: 13
  issue: 10
  year: 2018
  ident: 515_CR8
  publication-title: Mathematics
  doi: 10.3390/math6010010
– volume: 10
  start-page: 3477
  issue: 7
  year: 2017
  ident: 515_CR13
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.010.07.11
– volume: 13
  start-page: 35
  issue: 1–2
  year: 2015
  ident: 515_CR4
  publication-title: J. Concrete Appl. Math.
– volume: 15
  start-page: 129
  issue: 28
  year: 2019
  ident: 515_CR15
  publication-title: Sarajevo J. Math.
– volume-title: Periodicities in Nonlinear Difference Equations
  year: 2005
  ident: 515_CR6
– volume-title: Introduction to Applied Nonlinear Dynamical Systems and Chaos
  year: 2003
  ident: 515_CR24
– volume: 2005
  start-page: 127
  issue: 2
  year: 2005
  ident: 515_CR17
  publication-title: J. Inequal. Appl.
  doi: 10.1155/JIA.2005.127
– volume-title: Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures
  year: 2001
  ident: 515_CR10
  doi: 10.1201/9781420035384
– volume-title: Discrete Dynamical Systems and Difference Equations with Mathematica
  year: 2000
  ident: 515_CR11
– volume: 2018
  start-page: 7052935
  year: 2018
  ident: 515_CR12
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2018/7052935
– volume-title: Stability, Symbolic Dynamics and Chaos
  year: 1995
  ident: 515_CR20
– volume: 14
  start-page: 549
  year: 2006
  ident: 515_CR1
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2006.14.549
– volume: 39
  start-page: 2696
  year: 2016
  ident: 515_CR14
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3722
– volume: 15
  start-page: 283
  issue: 1
  year: 2016
  ident: 515_CR7
  publication-title: Qual. Theory Dyn. Syst.
  doi: 10.1007/s12346-015-0148-x
– volume: 2012
  start-page: 153
  year: 2012
  ident: 515_CR19
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2012-153
– start-page: 303
  volume-title: Risk Evaluation and Biological Reference Points for Fisheries Management
  year: 1993
  ident: 515_CR23
– volume: 11
  start-page: 179
  issue: 2
  year: 2016
  ident: 515_CR9
  publication-title: Int. J. Differ. Equ.
– volume: 14
  start-page: 149
  issue: 2
  year: 2019
  ident: 515_CR2
  publication-title: Adv. Dyn. Syst. Appl.
– volume: 53
  start-page: 747
  year: 2006
  ident: 515_CR22
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-006-0004-3
– volume: 15
  start-page: 215
  year: 2009
  ident: 515_CR21
  publication-title: J. Diffe. Equ. Appl.
  doi: 10.1080/10236190802054126
– volume-title: Elements of Applied Bifurcation Theory
  year: 1998
  ident: 515_CR18
– volume: 2013
  start-page: 210846
  year: 2013
  ident: 515_CR3
  publication-title: Sci. World J.
  doi: 10.1155/2013/210846
– volume: 12
  start-page: 27
  issue: 1
  year: 2017
  ident: 515_CR5
  publication-title: Int. J. Differ. Equ.
– volume: 11
  start-page: 59
  issue: 1
  year: 2002
  ident: 515_CR16
  publication-title: Radovi Mat. (Sarajevo J. Math.)
– volume: 2018
  start-page: 1613709
  year: 2018
  ident: 515_CR26
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2018/1613709
– volume: 23
  start-page: 1581
  issue: 4
  year: 2018
  ident: 515_CR25
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2018062
SSID ssj0062732
Score 2.2593687
Snippet This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Asymptotic properties
Bifurcations
Difference and Functional Equations
Difference equations
Dynamic stability
Dynamical Systems and Ergodic Theory
Mathematics
Mathematics and Statistics
Quadratic equations
Title Stability and Neimark–Sacker Bifurcation of Certain Mixed Monotone Rational Second-Order Difference Equation
URI https://link.springer.com/article/10.1007/s12346-021-00515-4
https://www.proquest.com/docview/2563304220
Volume 20
WOSCitedRecordID wos000687154200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1662-3592
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062732
  issn: 1575-5460
  databaseCode: RSV
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELagMMDAP6JQkAc2sJQ6duKOUFox0IJaQN0i23GkCpRCfxBsvANvyJNwdpJWIECCOY5lne2773x33yF0KHnoSWmqpCaVIIxTA3cuNERJj2qlghpVrmvJRdhui16vdpUXhY2KbPciJOk09azYjfrMJsyC-2sbkxA2jxbA3Al7HTvd20L_BmCQXYwTgAjhLPDyUpnv5_hsjmYY80tY1Fmb5ur_1rmGVnJ0iU-y47CO5ky6gZZbU2rW0SZKAV66hNgXLNMYt41lm7h7f33rSpthgU_7yWSYvePhQYLrWcoAbvWfTYxBAwwsezfu5G-IuGsd6phcWgZPfJZ3W9EGNx4zDvEtdNNsXNfPSd50gWjwxMZEC8a5EX6VKe7pQEovBqWYiFjT0NBQgbujRcANKAIjeBL7GjwuwYUG4JKE1Pe3USmFhewg7EtAGwrQO0tqzDeeUoC-bGCQx9SwQJdRtZB9pHNGctsY4z6acSlbWUYgy8jJMmJldDT95yHj4_h1dKXY0ii_m6MIQJ57xKFeGR0XWzj7_PNsu38bvoeWqD0FrnCxgkrj4cTso0X9NO6PhgfuzH4ASbTkxA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB61FKntofyUilB-fOAGljZee9d7pBSUqsmCkoC4rWyvV4paJZAEVG68A2_Ik3Ts3U1EBUjlvF7LGtsz33hmvgHYVSIOlLJNmigtKRfM4p2LLdUqYEbrKGHady1px2kqLy6S06oobFJnu9chSa-p58VuLOQuYRbdX9eYhPK38I6jxXKJfN3eea1_IzTIPsaJQIQKHgVVqczTczw2R3OM-U9Y1Fub46XXrXMZPlXokhyUx2EF3tjhKnzszKhZJ59hiPDSJ8TeEjXMSWod28Svh7v7nnIZFuTboLgel-94ZFSQwzJlgHQGf2xOUAOMHHs36VZviKTnHOqcnjgGT_K96rZiLDm6KjnE1-Ds-Kh_2KJV0wVq0BObUiO5EFaGTa5FYCKlghyVYiFzw2LLYo3ujpGRsKgIrBRFHhr0uKSQBoFLEbMw_AILQ1zIOpBQIdrQiN55kfDQBloj-nKBQZEzyyPTgGYt-8xUjOSuMcbvbM6l7GSZoSwzL8uMN2Bv9s9lycfx4ujNekuz6m5OMgR5_hGHBQ3Yr7dw_vn52Tb-b_gOvG_1O-2s_SP9-RU-MHcifBHjJixMx9d2CxbNzXQwGW_78_sXC2bnqA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxEB4VihAcKLQgAin4wK212HjtXefIT6IiSEANIG4r2-uVItACSUD01nfgDXkSxt7dpKAWqeK8Xssa2-Nv_r4B2FIiDpSyDdpUWlIumMU7F1uqVcCM1lGTad-15CjuduXFRfPkjyp-n-1ehSSLmgbH0pSPtm_SbHtS-MZC7pJn0RR2TUoon4KP3DUNcvZ677zSxRE-zj7eiaCECh4FZdnM3-d4-TRN8OarEKl_edqf3r_mRVgoUSfZKY7JEnyw-WeY74wpW4dfIEfY6RNlfxGVp6RrHQvF5dPvx55ymRdkt5_dDQr_HrnOyF6RSkA6_QebEtQM147Vm_wsfYuk5wztlB47Zk-yX3ZhMZa0bgtu8WU4a7dO937QshkDNWihjaiRXAgrwwbXIjCRUkGKyjKTqWGxZbFGM8jISFhUEFaKLA0NWmJSSIOAJotZGK7AdI4LWQUSKkQhGlE9z5o8tIHWiMpcwFCkzPLI1KBR7UNiSqZy1zDjKplwLDtZJijLxMsy4TX4Nv7npuDpeHN0vdrepLyzwwTBn3fusKAG36vtnHz-92xr_zd8E2ZP9tvJ0UH3cB3mmDsQvraxDtOjwZ39CjPmftQfDjb8UX4GXJDwjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+Neimark%E2%80%93Sacker+Bifurcation+of+Certain+Mixed+Monotone+Rational+Second-Order+Difference+Equation&rft.jtitle=Qualitative+theory+of+dynamical+systems&rft.au=Nurkanovi%C4%87%2C+Zehra&rft.au=Nurkanovi%C4%87%2C+Mehmed&rft.au=Gari%C4%87-Demirovi%C4%87%2C+Mirela&rft.date=2021-11-01&rft.pub=Springer+International+Publishing&rft.issn=1575-5460&rft.eissn=1662-3592&rft.volume=20&rft.issue=3&rft_id=info:doi/10.1007%2Fs12346-021-00515-4&rft.externalDocID=10_1007_s12346_021_00515_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1575-5460&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1575-5460&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1575-5460&client=summon