Stability and Neimark–Sacker Bifurcation of Certain Mixed Monotone Rational Second-Order Difference Equation
This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation with quadratic terms. The equation’s corresponding associated map is always decreasing for the second variable and can be either decreasing or...
Gespeichert in:
| Veröffentlicht in: | Qualitative theory of dynamical systems Jg. 20; H. 3 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.11.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1575-5460, 1662-3592 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation with quadratic terms. The equation’s corresponding associated map is always decreasing for the second variable and can be either decreasing or increasing for the first variable depending on the corresponding parametric values. In some parametric space regions, we prove that the unique positive equilibrium point’s local asymptotic stability implies global asymptotic stability. Our main tool for studying this equation’s global dynamics is the determination of invariant interval and use so-called “m–M” theorems and semi-cycle analysis. Also, we show that the considered equation exhibits Neimark–Sacker bifurcation under certain conditions. |
|---|---|
| AbstractList | This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation with quadratic terms. The equation’s corresponding associated map is always decreasing for the second variable and can be either decreasing or increasing for the first variable depending on the corresponding parametric values. In some parametric space regions, we prove that the unique positive equilibrium point’s local asymptotic stability implies global asymptotic stability. Our main tool for studying this equation’s global dynamics is the determination of invariant interval and use so-called “m–M” theorems and semi-cycle analysis. Also, we show that the considered equation exhibits Neimark–Sacker bifurcation under certain conditions. |
| ArticleNumber | 75 |
| Author | Nurkanović, Zehra Garić-Demirović, Mirela Nurkanović, Mehmed |
| Author_xml | – sequence: 1 givenname: Zehra orcidid: 0000-0002-0917-8433 surname: Nurkanović fullname: Nurkanović, Zehra organization: Department of Mathematics, University of Tuzla – sequence: 2 givenname: Mehmed orcidid: 0000-0003-0202-0390 surname: Nurkanović fullname: Nurkanović, Mehmed email: nurkanm@yahoo.com organization: Department of Mathematics, University of Tuzla – sequence: 3 givenname: Mirela surname: Garić-Demirović fullname: Garić-Demirović, Mirela organization: Department of Mathematics, University of Tuzla |
| BookMark | eNp9kElOAzEQRS0UJMJwAVaWWBs8tN2dJYQwSAwSgbXluMvISbCD7Uiw4w7ckJPQJEhILLKqWvxX9f_fRb0QAyB0yOgxo7Q-yYyLShHKGaFUMkmqLdRnSnEi5ID3ul3WkshK0R20m_OUUsVrwfsojIuZ-Lkv79iEFt-BfzFp9vXxOTZ2BgmfebdM1hQfA44ODyEV4wO-9W_Q4tsYYumM4IeVwMzxGGwMLblPbceee-cgQbCAR6_LlWQfbTszz3DwO_fQ08XocXhFbu4vr4enN8TyalCIbSopoRGsmkhqlTG0ZVK4prW8Bl5PlFK2URIE59BI1wpbM9XIxgopXc2F2ENH67uLFF-XkIuexmXqHGbNpRKCVpzTTsXXKptizgmcXqSf_O-aUf3Tq173qrte9apXXXVQ8w-yvqzClWT8fDMq1mju_oRnSH-uNlDfF_SPeQ |
| CitedBy_id | crossref_primary_10_18514_MMN_2025_4546 crossref_primary_10_1016_j_matcom_2025_07_013 crossref_primary_10_1080_10236198_2024_2378824 crossref_primary_10_3390_axioms13040280 |
| Cites_doi | 10.3390/math6010010 10.1007/s00285-006-0004-3 10.1155/2013/210846 10.1155/2018/1613709 10.1155/2018/7052935 10.1155/JIA.2005.127 10.1007/s12346-015-0148-x 10.1201/9781420035384 10.1002/mma.3722 10.3934/dcds.2006.14.549 10.22436/jnsa.010.07.11 10.1080/10236190802054126 10.3934/dcdsb.2018062 10.1186/1687-1847-2012-153 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s12346-021-00515-4 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1662-3592 |
| ExternalDocumentID | 10_1007_s12346_021_00515_4 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 203 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3J0 4.4 406 408 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA C1A CAG COF CS3 CSCUP DC1 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HZ~ IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z J9A JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c249t-c8455e8314b50c6aa0d153f8dc27e27b666c865e322e85fd3c716858c355f7233 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687154200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1575-5460 |
| IngestDate | Mon Nov 24 04:11:02 EST 2025 Tue Nov 18 22:33:30 EST 2025 Sat Nov 29 06:14:54 EST 2025 Fri Feb 21 02:48:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Neimark–Sacker bifurcation 39A20 39A30 Stability 39A10 Difference equations 39A23 Normal form 65L20 Invariant curve |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-c8455e8314b50c6aa0d153f8dc27e27b666c865e322e85fd3c716858c355f7233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0917-8433 0000-0003-0202-0390 |
| PQID | 2563304220 |
| PQPubID | 2044188 |
| ParticipantIDs | proquest_journals_2563304220 crossref_primary_10_1007_s12346_021_00515_4 crossref_citationtrail_10_1007_s12346_021_00515_4 springer_journals_10_1007_s12346_021_00515_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Qualitative theory of dynamical systems |
| PublicationTitleAbbrev | Qual. Theory Dyn. Syst |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Enciso, Sontag (CR1) 2006; 14 Kuznetsov (CR18) 1998 Kulenović, Merino (CR11) 2000 Thomson, Smith, Hunt, Rivard (CR23) 1993 Zhang, Zhou (CR26) 2018; 2018 Smith (CR22) 2006; 53 Jašarević Hrustić, Kulenović, Nurkanović (CR7) 2016; 15 Kulenović, Moranjkić, Nurkanović (CR14) 2016; 39 Grove, Ladas (CR6) 2005 Kulenović, Moranjkić, Nurkanović, Nurkanović (CR12) 2018; 2018 Kulenović, Moranjkić, Nurkanović (CR13) 2017; 10 Kalabušić, Nurkanović, Nurkanović (CR8) 2018; 6 Kulenović, Nurkanović (CR17) 2005; 2005 Robinson (CR20) 1995 Kostrov, Kudlak (CR9) 2016; 11 Garić-Demirović, Kulenović, Nurkanović (CR3) 2013; 2013 Kulenović, Nurkanović, Nurkanović (CR15) 2019; 15 Garić-Demirović, Hrustić, Nurkanović (CR2) 2019; 14 Zhong, Deng (CR25) 2018; 23 Moranjkić, Nurkanović (CR19) 2012; 2012 Garić-Demirović, Kulenović, Nurkanović (CR4) 2015; 13 Sedaghat (CR21) 2009; 15 Garić-Demirović, Nurkanović, Nurkanović (CR5) 2017; 12 Kulenović, Nurkanović (CR16) 2002; 11 Kulenović, Ladas (CR10) 2001 Wiggins (CR24) 2003 Y Kuznetsov (515_CR18) 1998 Z Zhang (515_CR26) 2018; 2018 EA Grove (515_CR6) 2005 Y Kostrov (515_CR9) 2016; 11 M Garić-Demirović (515_CR2) 2019; 14 HL Smith (515_CR22) 2006; 53 M Garić-Demirović (515_CR3) 2013; 2013 S Jašarević Hrustić (515_CR7) 2016; 15 MRS Kulenović (515_CR10) 2001 J Zhong (515_CR25) 2018; 23 MRS Kulenović (515_CR14) 2016; 39 MRS Kulenović (515_CR16) 2002; 11 M Garić-Demirović (515_CR5) 2017; 12 EG Enciso (515_CR1) 2006; 14 GG Thomson (515_CR23) 1993 S Kalabušić (515_CR8) 2018; 6 M Garić-Demirović (515_CR4) 2015; 13 S Robinson (515_CR20) 1995 S Moranjkić (515_CR19) 2012; 2012 H Sedaghat (515_CR21) 2009; 15 S Wiggins (515_CR24) 2003 MRS Kulenović (515_CR15) 2019; 15 MRS Kulenović (515_CR17) 2005; 2005 MRS Kulenović (515_CR13) 2017; 10 MRS Kulenović (515_CR11) 2000 MRS Kulenović (515_CR12) 2018; 2018 |
| References_xml | – year: 2000 ident: CR11 publication-title: Discrete Dynamical Systems and Difference Equations with Mathematica – start-page: 303 year: 1993 end-page: 320 ident: CR23 article-title: A proposal for a treshold stock sizeand maximum fishing mortality rate publication-title: Risk Evaluation and Biological Reference Points for Fisheries Management – volume: 6 start-page: 13 issue: 10 year: 2018 ident: CR8 article-title: Global dynamics of certain mix monotone difference equation publication-title: Mathematics doi: 10.3390/math6010010 – volume: 53 start-page: 747 year: 2006 end-page: 758 ident: CR22 article-title: Non-monotone systems decomposable into monotone systems with negative feedback publication-title: J. Math. Biol. doi: 10.1007/s00285-006-0004-3 – year: 2003 ident: CR24 publication-title: Introduction to Applied Nonlinear Dynamical Systems and Chaos – volume: 2013 start-page: 210846 year: 2013 ident: CR3 article-title: Global dynamics of certain homogeneous second-order quadratic fractional difference equations publication-title: Sci. World J. doi: 10.1155/2013/210846 – volume: 2018 start-page: 1613709 year: 2018 ident: CR26 article-title: The bifurcation of two invariant closed curves in a discrete model publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2018/1613709 – year: 1995 ident: CR20 publication-title: Stability, Symbolic Dynamics and Chaos – volume: 2018 start-page: 7052935 year: 2018 ident: CR12 article-title: Global asymptotic stability and Naimark–Sacker bifurcation of certain mix monotone difference equation publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2018/7052935 – volume: 2005 start-page: 127 issue: 2 year: 2005 end-page: 143 ident: CR17 article-title: Asymptotic behavior of a system of linear fractional difference equations publication-title: J. Inequal. Appl. doi: 10.1155/JIA.2005.127 – year: 2005 ident: CR6 publication-title: Periodicities in Nonlinear Difference Equations – volume: 13 start-page: 35 issue: 1–2 year: 2015 end-page: 50 ident: CR4 article-title: Basins of attraction of certain homogeneous second order quadratic fractional difference equation publication-title: J. Concrete Appl. Math. – volume: 15 start-page: 283 issue: 1 year: 2016 end-page: 307 ident: CR7 article-title: Global dynamics and bifurcations of certain second order rational difference equation with quadratic terms publication-title: Qual. Theory Dyn. Syst. doi: 10.1007/s12346-015-0148-x – volume: 15 start-page: 129 issue: 28 year: 2019 end-page: 154 ident: CR15 article-title: Global dynamics of certain mix monotone difference equation via center manifold thepry and theory of monotone maps publication-title: Sarajevo J. Math. – year: 2001 ident: CR10 publication-title: Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures doi: 10.1201/9781420035384 – volume: 39 start-page: 2696 year: 2016 end-page: 2715 ident: CR14 article-title: Global dynamics and bifurcation of perturbed Sigmoid Beverton–Holt difference equation publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.3722 – year: 1998 ident: CR18 publication-title: Elements of Applied Bifurcation Theory – volume: 14 start-page: 549 year: 2006 end-page: 578 ident: CR1 article-title: Global attractivity, I/O monotone small-gain theorems, and biological delay systems publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2006.14.549 – volume: 10 start-page: 3477 issue: 7 year: 2017 end-page: 3489 ident: CR13 article-title: Naimark–Sacker bifurcation of second order rational difference equation with quadratic terms publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.010.07.11 – volume: 14 start-page: 149 issue: 2 year: 2019 end-page: 178 ident: CR2 article-title: Stability and periodicity of certain homogeneous second-order fractional difference equation with quadratic terms publication-title: Adv. Dyn. Syst. Appl. – volume: 15 start-page: 215 year: 2009 end-page: 224 ident: CR21 article-title: Global behaviours of rational difference equations of orders two and three with quadratic terms publication-title: J. Diffe. Equ. Appl. doi: 10.1080/10236190802054126 – volume: 23 start-page: 1581 issue: 4 year: 2018 end-page: 1600 ident: CR25 article-title: Two codimension-two bifurcations of a second-order difference equation from macroeconomics publication-title: Discrete Contin. Dyn. Syst. Ser. B doi: 10.3934/dcdsb.2018062 – volume: 11 start-page: 179 issue: 2 year: 2016 end-page: 202 ident: CR9 article-title: On a second-order rational difference equation with a quadratic term publication-title: Int. J. Differ. Equ. – volume: 12 start-page: 27 issue: 1 year: 2017 end-page: 53 ident: CR5 article-title: Stability, periodicity and Neimark–Sacker bifurcation of certain homogeneous fractional difference equation publication-title: Int. J. Differ. Equ. – volume: 11 start-page: 59 issue: 1 year: 2002 end-page: 78 ident: CR16 article-title: Asymptotic behavior of a two dimensional linear fractional system of difference equations publication-title: Radovi Mat. (Sarajevo J. Math.) – volume: 2012 start-page: 153 year: 2012 ident: CR19 article-title: Basins of attraction of certain rational anti-competitive system of difference equations in the plane publication-title: Adv. Differ. Equ. doi: 10.1186/1687-1847-2012-153 – volume: 6 start-page: 13 issue: 10 year: 2018 ident: 515_CR8 publication-title: Mathematics doi: 10.3390/math6010010 – volume: 10 start-page: 3477 issue: 7 year: 2017 ident: 515_CR13 publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.010.07.11 – volume: 13 start-page: 35 issue: 1–2 year: 2015 ident: 515_CR4 publication-title: J. Concrete Appl. Math. – volume: 15 start-page: 129 issue: 28 year: 2019 ident: 515_CR15 publication-title: Sarajevo J. Math. – volume-title: Periodicities in Nonlinear Difference Equations year: 2005 ident: 515_CR6 – volume-title: Introduction to Applied Nonlinear Dynamical Systems and Chaos year: 2003 ident: 515_CR24 – volume: 2005 start-page: 127 issue: 2 year: 2005 ident: 515_CR17 publication-title: J. Inequal. Appl. doi: 10.1155/JIA.2005.127 – volume-title: Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures year: 2001 ident: 515_CR10 doi: 10.1201/9781420035384 – volume-title: Discrete Dynamical Systems and Difference Equations with Mathematica year: 2000 ident: 515_CR11 – volume: 2018 start-page: 7052935 year: 2018 ident: 515_CR12 publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2018/7052935 – volume-title: Stability, Symbolic Dynamics and Chaos year: 1995 ident: 515_CR20 – volume: 14 start-page: 549 year: 2006 ident: 515_CR1 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2006.14.549 – volume: 39 start-page: 2696 year: 2016 ident: 515_CR14 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.3722 – volume: 15 start-page: 283 issue: 1 year: 2016 ident: 515_CR7 publication-title: Qual. Theory Dyn. Syst. doi: 10.1007/s12346-015-0148-x – volume: 2012 start-page: 153 year: 2012 ident: 515_CR19 publication-title: Adv. Differ. Equ. doi: 10.1186/1687-1847-2012-153 – start-page: 303 volume-title: Risk Evaluation and Biological Reference Points for Fisheries Management year: 1993 ident: 515_CR23 – volume: 11 start-page: 179 issue: 2 year: 2016 ident: 515_CR9 publication-title: Int. J. Differ. Equ. – volume: 14 start-page: 149 issue: 2 year: 2019 ident: 515_CR2 publication-title: Adv. Dyn. Syst. Appl. – volume: 53 start-page: 747 year: 2006 ident: 515_CR22 publication-title: J. Math. Biol. doi: 10.1007/s00285-006-0004-3 – volume: 15 start-page: 215 year: 2009 ident: 515_CR21 publication-title: J. Diffe. Equ. Appl. doi: 10.1080/10236190802054126 – volume-title: Elements of Applied Bifurcation Theory year: 1998 ident: 515_CR18 – volume: 2013 start-page: 210846 year: 2013 ident: 515_CR3 publication-title: Sci. World J. doi: 10.1155/2013/210846 – volume: 12 start-page: 27 issue: 1 year: 2017 ident: 515_CR5 publication-title: Int. J. Differ. Equ. – volume: 11 start-page: 59 issue: 1 year: 2002 ident: 515_CR16 publication-title: Radovi Mat. (Sarajevo J. Math.) – volume: 2018 start-page: 1613709 year: 2018 ident: 515_CR26 publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2018/1613709 – volume: 23 start-page: 1581 issue: 4 year: 2018 ident: 515_CR25 publication-title: Discrete Contin. Dyn. Syst. Ser. B doi: 10.3934/dcdsb.2018062 |
| SSID | ssj0062732 |
| Score | 2.2593687 |
| Snippet | This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Asymptotic properties Bifurcations Difference and Functional Equations Difference equations Dynamic stability Dynamical Systems and Ergodic Theory Mathematics Mathematics and Statistics Quadratic equations |
| Title | Stability and Neimark–Sacker Bifurcation of Certain Mixed Monotone Rational Second-Order Difference Equation |
| URI | https://link.springer.com/article/10.1007/s12346-021-00515-4 https://www.proquest.com/docview/2563304220 |
| Volume | 20 |
| WOSCitedRecordID | wos000687154200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1662-3592 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062732 issn: 1575-5460 databaseCode: RSV dateStart: 19990301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELagMMDAP6JQkAc2sJQ6duKOUFox0IJaQN0i23GkCpRCfxBsvANvyJNwdpJWIECCOY5lne2773x33yF0KHnoSWmqpCaVIIxTA3cuNERJj2qlghpVrmvJRdhui16vdpUXhY2KbPciJOk09azYjfrMJsyC-2sbkxA2jxbA3Al7HTvd20L_BmCQXYwTgAjhLPDyUpnv5_hsjmYY80tY1Fmb5ur_1rmGVnJ0iU-y47CO5ky6gZZbU2rW0SZKAV66hNgXLNMYt41lm7h7f33rSpthgU_7yWSYvePhQYLrWcoAbvWfTYxBAwwsezfu5G-IuGsd6phcWgZPfJZ3W9EGNx4zDvEtdNNsXNfPSd50gWjwxMZEC8a5EX6VKe7pQEovBqWYiFjT0NBQgbujRcANKAIjeBL7GjwuwYUG4JKE1Pe3USmFhewg7EtAGwrQO0tqzDeeUoC-bGCQx9SwQJdRtZB9pHNGctsY4z6acSlbWUYgy8jJMmJldDT95yHj4_h1dKXY0ii_m6MIQJ57xKFeGR0XWzj7_PNsu38bvoeWqD0FrnCxgkrj4cTso0X9NO6PhgfuzH4ASbTkxA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB61FKntofyUilB-fOAGljZee9d7pBSUqsmCkoC4rWyvV4paJZAEVG68A2_Ik3Ts3U1EBUjlvF7LGtsz33hmvgHYVSIOlLJNmigtKRfM4p2LLdUqYEbrKGHady1px2kqLy6S06oobFJnu9chSa-p58VuLOQuYRbdX9eYhPK38I6jxXKJfN3eea1_IzTIPsaJQIQKHgVVqczTczw2R3OM-U9Y1Fub46XXrXMZPlXokhyUx2EF3tjhKnzszKhZJ59hiPDSJ8TeEjXMSWod28Svh7v7nnIZFuTboLgel-94ZFSQwzJlgHQGf2xOUAOMHHs36VZviKTnHOqcnjgGT_K96rZiLDm6KjnE1-Ds-Kh_2KJV0wVq0BObUiO5EFaGTa5FYCKlghyVYiFzw2LLYo3ujpGRsKgIrBRFHhr0uKSQBoFLEbMw_AILQ1zIOpBQIdrQiN55kfDQBloj-nKBQZEzyyPTgGYt-8xUjOSuMcbvbM6l7GSZoSwzL8uMN2Bv9s9lycfx4ujNekuz6m5OMgR5_hGHBQ3Yr7dw_vn52Tb-b_gOvG_1O-2s_SP9-RU-MHcifBHjJixMx9d2CxbNzXQwGW_78_sXC2bnqA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxEB4VihAcKLQgAin4wK212HjtXefIT6IiSEANIG4r2-uVItACSUD01nfgDXkSxt7dpKAWqeK8Xssa2-Nv_r4B2FIiDpSyDdpUWlIumMU7F1uqVcCM1lGTad-15CjuduXFRfPkjyp-n-1ehSSLmgbH0pSPtm_SbHtS-MZC7pJn0RR2TUoon4KP3DUNcvZ677zSxRE-zj7eiaCECh4FZdnM3-d4-TRN8OarEKl_edqf3r_mRVgoUSfZKY7JEnyw-WeY74wpW4dfIEfY6RNlfxGVp6RrHQvF5dPvx55ymRdkt5_dDQr_HrnOyF6RSkA6_QebEtQM147Vm_wsfYuk5wztlB47Zk-yX3ZhMZa0bgtu8WU4a7dO937QshkDNWihjaiRXAgrwwbXIjCRUkGKyjKTqWGxZbFGM8jISFhUEFaKLA0NWmJSSIOAJotZGK7AdI4LWQUSKkQhGlE9z5o8tIHWiMpcwFCkzPLI1KBR7UNiSqZy1zDjKplwLDtZJijLxMsy4TX4Nv7npuDpeHN0vdrepLyzwwTBn3fusKAG36vtnHz-92xr_zd8E2ZP9tvJ0UH3cB3mmDsQvraxDtOjwZ39CjPmftQfDjb8UX4GXJDwjA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+Neimark%E2%80%93Sacker+Bifurcation+of+Certain+Mixed+Monotone+Rational+Second-Order+Difference+Equation&rft.jtitle=Qualitative+theory+of+dynamical+systems&rft.au=Nurkanovi%C4%87%2C+Zehra&rft.au=Nurkanovi%C4%87%2C+Mehmed&rft.au=Gari%C4%87-Demirovi%C4%87%2C+Mirela&rft.date=2021-11-01&rft.pub=Springer+International+Publishing&rft.issn=1575-5460&rft.eissn=1662-3592&rft.volume=20&rft.issue=3&rft_id=info:doi/10.1007%2Fs12346-021-00515-4&rft.externalDocID=10_1007_s12346_021_00515_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1575-5460&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1575-5460&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1575-5460&client=summon |