Stability and Neimark–Sacker Bifurcation of Certain Mixed Monotone Rational Second-Order Difference Equation
This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation with quadratic terms. The equation’s corresponding associated map is always decreasing for the second variable and can be either decreasing or...
Gespeichert in:
| Veröffentlicht in: | Qualitative theory of dynamical systems Jg. 20; H. 3 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.11.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1575-5460, 1662-3592 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation with quadratic terms. The equation’s corresponding associated map is always decreasing for the second variable and can be either decreasing or increasing for the first variable depending on the corresponding parametric values. In some parametric space regions, we prove that the unique positive equilibrium point’s local asymptotic stability implies global asymptotic stability. Our main tool for studying this equation’s global dynamics is the determination of invariant interval and use so-called “m–M” theorems and semi-cycle analysis. Also, we show that the considered equation exhibits Neimark–Sacker bifurcation under certain conditions. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1575-5460 1662-3592 |
| DOI: | 10.1007/s12346-021-00515-4 |