Stability and Neimark–Sacker Bifurcation of Certain Mixed Monotone Rational Second-Order Difference Equation

This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation with quadratic terms. The equation’s corresponding associated map is always decreasing for the second variable and can be either decreasing or...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Qualitative theory of dynamical systems Ročník 20; číslo 3
Hlavní autori: Nurkanović, Zehra, Nurkanović, Mehmed, Garić-Demirović, Mirela
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.11.2021
Springer Nature B.V
Predmet:
ISSN:1575-5460, 1662-3592
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper investigates the local and global character of the unique positive equilibrium of certain mixed monotone rational second-order difference equation with quadratic terms. The equation’s corresponding associated map is always decreasing for the second variable and can be either decreasing or increasing for the first variable depending on the corresponding parametric values. In some parametric space regions, we prove that the unique positive equilibrium point’s local asymptotic stability implies global asymptotic stability. Our main tool for studying this equation’s global dynamics is the determination of invariant interval and use so-called “m–M” theorems and semi-cycle analysis. Also, we show that the considered equation exhibits Neimark–Sacker bifurcation under certain conditions.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-021-00515-4