Preconditioned Three-Operator Splitting Algorithm with Applications to Image Restoration

In this paper, we present primal-dual splitting algorithms for the convex minimization problem involving smooth functions with Lipschitzian gradient, finite sum of nonsmooth proximable functions, and linear composite functions. Many total variation-based image processing problems are special cases o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing Vol. 92; no. 3; p. 106
Main Authors: Tang, Yuchao, Wen, Meng, Zeng, Tieyong
Format: Journal Article
Language:English
Published: New York Springer US 01.09.2022
Springer Nature B.V
Subjects:
ISSN:0885-7474, 1573-7691
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present primal-dual splitting algorithms for the convex minimization problem involving smooth functions with Lipschitzian gradient, finite sum of nonsmooth proximable functions, and linear composite functions. Many total variation-based image processing problems are special cases of such problems. The obtained primal-dual splitting algorithms are derived from a preconditioned three-operator splitting algorithm applied to primal-dual optimality conditions in a proper product space. The convergence of the proposed algorithms under appropriate assumptions on the parameters has been proved. Numerical experiments on a novel image restoration problem are presented to demonstrate the efficiency and effectiveness of the proposed algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-022-01958-w