Preconditioned Three-Operator Splitting Algorithm with Applications to Image Restoration

In this paper, we present primal-dual splitting algorithms for the convex minimization problem involving smooth functions with Lipschitzian gradient, finite sum of nonsmooth proximable functions, and linear composite functions. Many total variation-based image processing problems are special cases o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 92; číslo 3; s. 106
Hlavní autoři: Tang, Yuchao, Wen, Meng, Zeng, Tieyong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2022
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present primal-dual splitting algorithms for the convex minimization problem involving smooth functions with Lipschitzian gradient, finite sum of nonsmooth proximable functions, and linear composite functions. Many total variation-based image processing problems are special cases of such problems. The obtained primal-dual splitting algorithms are derived from a preconditioned three-operator splitting algorithm applied to primal-dual optimality conditions in a proper product space. The convergence of the proposed algorithms under appropriate assumptions on the parameters has been proved. Numerical experiments on a novel image restoration problem are presented to demonstrate the efficiency and effectiveness of the proposed algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-022-01958-w