Preconditioned Three-Operator Splitting Algorithm with Applications to Image Restoration
In this paper, we present primal-dual splitting algorithms for the convex minimization problem involving smooth functions with Lipschitzian gradient, finite sum of nonsmooth proximable functions, and linear composite functions. Many total variation-based image processing problems are special cases o...
Uloženo v:
| Vydáno v: | Journal of scientific computing Ročník 92; číslo 3; s. 106 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we present primal-dual splitting algorithms for the convex minimization problem involving smooth functions with Lipschitzian gradient, finite sum of nonsmooth proximable functions, and linear composite functions. Many total variation-based image processing problems are special cases of such problems. The obtained primal-dual splitting algorithms are derived from a preconditioned three-operator splitting algorithm applied to primal-dual optimality conditions in a proper product space. The convergence of the proposed algorithms under appropriate assumptions on the parameters has been proved. Numerical experiments on a novel image restoration problem are presented to demonstrate the efficiency and effectiveness of the proposed algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-022-01958-w |