On some restrictions of an operator to an invariant subspace

For Banach spaces we consider the bounded linear operators which are surjective and noninjective. We show some general properties of such mappings. We examine whether such operators can be restricted to an involution or a projection. Thus, we will show that there exist many invariant subspaces for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 450; S. 1 - 6
1. Verfasser: Wójcik, Paweł
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.06.2014
Schlagworte:
ISSN:0024-3795, 1873-1856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For Banach spaces we consider the bounded linear operators which are surjective and noninjective. We show some general properties of such mappings. We examine whether such operators can be restricted to an involution or a projection. Thus, we will show that there exist many invariant subspaces for those operators. In respect to this, we will understand better the structure of many operators.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2014.02.049