On some restrictions of an operator to an invariant subspace

For Banach spaces we consider the bounded linear operators which are surjective and noninjective. We show some general properties of such mappings. We examine whether such operators can be restricted to an involution or a projection. Thus, we will show that there exist many invariant subspaces for t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Linear algebra and its applications Ročník 450; s. 1 - 6
Hlavný autor: Wójcik, Paweł
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.06.2014
Predmet:
ISSN:0024-3795, 1873-1856
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:For Banach spaces we consider the bounded linear operators which are surjective and noninjective. We show some general properties of such mappings. We examine whether such operators can be restricted to an involution or a projection. Thus, we will show that there exist many invariant subspaces for those operators. In respect to this, we will understand better the structure of many operators.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2014.02.049