On some restrictions of an operator to an invariant subspace
For Banach spaces we consider the bounded linear operators which are surjective and noninjective. We show some general properties of such mappings. We examine whether such operators can be restricted to an involution or a projection. Thus, we will show that there exist many invariant subspaces for t...
Uloženo v:
| Vydáno v: | Linear algebra and its applications Ročník 450; s. 1 - 6 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.06.2014
|
| Témata: | |
| ISSN: | 0024-3795, 1873-1856 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For Banach spaces we consider the bounded linear operators which are surjective and noninjective. We show some general properties of such mappings. We examine whether such operators can be restricted to an involution or a projection. Thus, we will show that there exist many invariant subspaces for those operators. In respect to this, we will understand better the structure of many operators. |
|---|---|
| ISSN: | 0024-3795 1873-1856 |
| DOI: | 10.1016/j.laa.2014.02.049 |