Parity decision tree in classical–quantum separations for certain classes of Boolean functions

In this paper, we study the separation between the deterministic (classical) query complexity ( D ) and the exact quantum query complexity ( Q E ) of several Boolean function classes using the parity decision tree method. We first define the query friendly (QF) functions on n variables as the ones w...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Quantum information processing Ročník 20; číslo 6
Hlavní autori: Mukherjee, Chandra Sekhar, Maitra, Subhamoy
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2021
Springer Nature B.V
Predmet:
ISSN:1570-0755, 1573-1332
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we study the separation between the deterministic (classical) query complexity ( D ) and the exact quantum query complexity ( Q E ) of several Boolean function classes using the parity decision tree method. We first define the query friendly (QF) functions on n variables as the ones with minimum deterministic query complexity D ( f ). We observe that for each n , there exists a non-separable class of QF functions such that D ( f ) = Q E ( f ) . Further, we show that for some values of n , all the QF functions are non-separable. Then, we present QF functions for certain other values of n where separation can be demonstrated, in particular, Q E ( f ) = D ( f ) - 1 . In a related effort, we also study the Maiorana–McFarland (MM)-type Bent functions. We show that while for any MM Bent function f on n variables D ( f ) = n , separation can be achieved as n 2 ≤ Q E ( f ) ≤ ⌈ 3 n 4 ⌉ . Our results highlight how different classes of Boolean functions can be analyzed for classical–quantum separation exploiting the parity decision tree method.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1570-0755
1573-1332
DOI:10.1007/s11128-021-03158-1