An outer-approximation algorithm for maximum-entropy sampling

We apply the well-known outer-approximation algorithm (OA) of convex mixed-integer nonlinear optimization to the maximum-entropy sampling problem (MESP), using convex relaxations for MESP from the literature. We discuss possible methodologies to accelerate the convergence of OA, by combining the use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics Jg. 347; S. 271 - 284
Hauptverfasser: Fampa, Marcia, Lee, Jon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.04.2024
Schlagworte:
ISSN:0166-218X, 1872-6771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply the well-known outer-approximation algorithm (OA) of convex mixed-integer nonlinear optimization to the maximum-entropy sampling problem (MESP), using convex relaxations for MESP from the literature. We discuss possible methodologies to accelerate the convergence of OA, by combining the use of the different relaxations and by selecting additional linearization points using a local-search procedure, disjunctive cuts, a regularization method, and a second-order approximation of the objective of the MESP. We discuss our findings through numerical experiments with a benchmark test problem.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2024.01.002