Quasi-polynomial algorithms for list-coloring of nearly intersecting hypergraphs

A hypergraph H on n vertices and m edges is said to be nearly-intersecting if every edge of H intersects all but at most polylogarthmically many (in m and n) other edges. Given lists of colors L(v), for each vertex v∈V, H is said to be L-(list) colorable, if each vertex can be assigned a color from...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 902; s. 64 - 75
Hlavní autor: Elbassioni, Khaled
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 18.01.2022
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A hypergraph H on n vertices and m edges is said to be nearly-intersecting if every edge of H intersects all but at most polylogarthmically many (in m and n) other edges. Given lists of colors L(v), for each vertex v∈V, H is said to be L-(list) colorable, if each vertex can be assigned a color from its list such that no edge in H is monochromatic. We show that list-colorability for any nearly intersecting hypergraph, and lists drawn from a set of constant size, can be checked in quasi-polynomial time in m and n.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2021.12.009