Asynchronous Distributed Nonsmooth Composite Optimization via Computation-Efficient Primal-Dual Proximal Algorithms
This paper focuses on a distributed nonsmooth composite optimization problem over a multiagent networked system, in which each agent is equipped with a local Lipschitz-differentiable function and two possibly nonsmooth functions, one of which incorporates a linear mapping. To address this problem, w...
Uložené v:
| Vydané v: | IEEE transactions on emerging topics in computational intelligence Ročník 9; číslo 2; s. 1595 - 1609 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2471-285X, 2471-285X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper focuses on a distributed nonsmooth composite optimization problem over a multiagent networked system, in which each agent is equipped with a local Lipschitz-differentiable function and two possibly nonsmooth functions, one of which incorporates a linear mapping. To address this problem, we introduce a synchronous distributed algorithm featuring uncoordinated relaxed factors. It serves as a generalized relaxed version of the recent method TriPD-Dist. Notably, the considered problem in the presence of asynchrony and delays remains relatively unexplored. In response, a new asynchronous distributed primal-dual proximal algorithm is first proposed, rooted in a comprehensive asynchronous model. It is operated under the assumption that agents utilize possibly outdated information from their neighbors, while considering arbitrary, time-varying, yet bounded delays. With some special adjustments, new asynchronous distributed extensions of existing centralized methods are obtained via the proposed asynchronous algorithm. Theoretically, a new convergence analysis technique of the proposed algorithms is provided. Specifically, a sublinear convergence rate is explicitly derived by showcasing that the iteration behaves as a nonexpansive operator. In addition, the proposed asynchronous algorithm converges the optimal solution in expectation under the same step-size conditions as its synchronous counterpart. Finally, numerical studies substantiate the efficacy of the proposed algorithms and validate their performance in practical scenarios. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2471-285X 2471-285X |
| DOI: | 10.1109/TETCI.2024.3437249 |