Boundedness and stabilization in a quasilinear forager–exploiter model with volume-filling effects

This paper deals with a forager–exploiter model involving nonlinear diffusions and volume-filling effects u t = ∇ · ( ( u + 1 ) m ∇ u ) - ∇ · ( S 1 ( u ) ∇ w ) , x ∈ Ω , t > 0 , v t = ∇ · ( ( v + 1 ) l ∇ v ) - ∇ · ( S 2 ( v ) ∇ u ) , x ∈ Ω , t > 0 , w t = Δ w - ( u + v ) w - μ w + r ( x , t )...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Zeitschrift für angewandte Mathematik und Physik Ročník 73; číslo 5
Hlavní autori: Chen, Yao, Li, Zhongping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.10.2022
Springer Nature B.V
Predmet:
ISSN:0044-2275, 1420-9039
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper deals with a forager–exploiter model involving nonlinear diffusions and volume-filling effects u t = ∇ · ( ( u + 1 ) m ∇ u ) - ∇ · ( S 1 ( u ) ∇ w ) , x ∈ Ω , t > 0 , v t = ∇ · ( ( v + 1 ) l ∇ v ) - ∇ · ( S 2 ( v ) ∇ u ) , x ∈ Ω , t > 0 , w t = Δ w - ( u + v ) w - μ w + r ( x , t ) , x ∈ Ω , t > 0 under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂ R n with n ≥ 1 , where μ > 0 , m , l ∈ R and r ∈ C 1 ( Ω ¯ × [ 0 , ∞ ) ) ∩ L ∞ ( Ω × ( 0 , ∞ ) ) is a given nonnegative function, the initial data u 0 , v 0 , w 0 satisfy 0 ≤ u 0 , v 0 ≤ 1 and w 0 ≥ 0 . Volume-filling effects account for an ordinary form by taking S 1 ( u ) = u ( 1 - u ) , S 2 ( v ) = v ( 1 - v ) . It is proved that the corresponding initial-boundary value problem admits a unique global bounded classical solution. Furthermore, if r satisfies ∫ t t + 1 ∫ Ω r → 0 as t → ∞ , then the global bounded classical solution ( u ,  v ,  w ) that converges to 1 | Ω | ∫ Ω u 0 , 1 | Ω | ∫ Ω v 0 , 0 as t → ∞ .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-022-01821-w