Hypercomplex Fock states for discrete electromagnetic Schrödinger operators: A Bayesian probability perspective

We present and study a new class of Fock states underlying to discrete electromagnetic Schrödinger operators from a multivector calculus perspective. This naturally lead to hypercomplex versions of Poisson–Charlier polynomials, Meixner polynomials, among other ones. The foundations of this work are...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 315; s. 531 - 548
Hlavní autor: Faustino, N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.12.2017
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present and study a new class of Fock states underlying to discrete electromagnetic Schrödinger operators from a multivector calculus perspective. This naturally lead to hypercomplex versions of Poisson–Charlier polynomials, Meixner polynomials, among other ones. The foundations of this work are based on the exploitation of the quantum probability formulation ‘à la Dirac’ to the setting of Bayesian probabilities, on which the Fock states arise as discrete quasi-probability distributions carrying a set of independent and identically distributed (i.i.d) random variables. By employing Mellin–Barnes integrals in the complex plane we obtain counterparts for the well-known multidimensional Poisson and hypergeometric distributions, as well as quasi-probability distributions that may take negative or complex values on the lattice hZn.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2017.07.080