Stochastic privacy-preserving methods for nonconvex sparse learning
Sparse learning is essential in mining high-dimensional data. Iterative hard thresholding (IHT) methods are effective for optimizing nonconvex objectives for sparse learning. However, IHT methods are vulnerable to adversary attacks that infer sensitive data. Although pioneering works attempted to re...
Gespeichert in:
| Veröffentlicht in: | Information sciences Jg. 630; S. 567 - 585 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.06.2023
|
| Schlagworte: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!