Finite dimensional invariant subspaces for algebras of linear operators and amenable Banach algebras

We study a finite dimensional invariant subspace property similar to Fan's Theorem on semigroups for arbitrary Banach algebras A in terms of amenability of X(A,ϕ), the closed subalgebra of A generated by the set of all maximal elements in A with respect to a character ϕ. As a consequence, we of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 510; s. 329 - 345
Hlavní autoři: Nasr-Isfahani, Rasoul, Nemati, Mehdi, Shahmoradi, Somayeh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.2016
Témata:
ISSN:0024-3795, 1873-1856
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study a finite dimensional invariant subspace property similar to Fan's Theorem on semigroups for arbitrary Banach algebras A in terms of amenability of X(A,ϕ), the closed subalgebra of A generated by the set of all maximal elements in A with respect to a character ϕ. As a consequence, we offer some applications to the measure algebra M(G) and the generalized Fourier algebra Ap(G) of a locally compact group G.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2016.08.028