Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: a micromechanical approach

This is the first time the multidirectional-graded porous panel structure modeled numerically using an equivalent single-layer higher-order polynomial model considering the cubic variation of extensional displacement to maintain the necessary stress/strain. The effect of porosity (even and uneven di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering with computers Ročník 38; číslo Suppl 4; s. 3077 - 3097
Hlavní autoři: Ramteke, Prashik Malhari, Sharma, Nitin, Choudhary, Jainarayan, Hissaria, Priyanshu, Panda, Subrata Kumar
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.10.2022
Springer Nature B.V
Témata:
ISSN:0177-0667, 1435-5663
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This is the first time the multidirectional-graded porous panel structure modeled numerically using an equivalent single-layer higher-order polynomial model considering the cubic variation of extensional displacement to maintain the necessary stress/strain. The effect of porosity (even and uneven distributions) and variable grading patterns also included achieving the generality. Further, the deflection and stress values, the proposed bidirectional functionally graded (2D-FG) structure, are predicted under the variable loadings, i.e. static and dynamic. Three different types of grading pattern, i.e. power-law, exponential and sigmoid are introduced by varying the material constituents along their principal material axes (longitudinal and transverse). The current numerical solutions (deflection and stress) are obtained through a customized computer code (prepared in MATLAB), under the influences of the static and time-dependent loadings utilizing the higher-order finite element formulations. The dynamic deflections are obtained through the constant acceleration type Newmark’s time-integration steps. The predicted result accuracy is checked by comparing the previously published values in literature and different simulation models (ANSYS and ABAQUS). Besides, the batch input technique is adopted for the simulation material models for both the ANSYS and ABAQUS. Moreover, the python scripting is adopted first time to modify ABAQUS input files for the present 2D graded structure. The influential structure input parameter (power-law exponents, thickness ratio, aspect ratio, end conditions, geometry and curvature ratio) is varied to compute a few final responses (deflection and stress data) of multidirectional FG structure via the derived mathematical model and the final understandings listed the details.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0177-0667
1435-5663
DOI:10.1007/s00366-021-01449-w