An improved ant colony algorithm for TSP application

Aiming at the problems of slow convergence speed and easy to fall into the optimal solution of ant colony algorithm, genetic algorithm and nonlinear optimization are used to optimize ant colony algorithm. After the initial iteration of the ant colony, the solution formed by all paths is the initial...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 1802; číslo 3; s. 32067
Hlavní autoři: Jiao, Deqiang, Liu, Che, Li, Zerui, Wang, Dinghao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.03.2021
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Aiming at the problems of slow convergence speed and easy to fall into the optimal solution of ant colony algorithm, genetic algorithm and nonlinear optimization are used to optimize ant colony algorithm. After the initial iteration of the ant colony, the solution formed by all paths is the initial population, and then the genetic algorithm is used for selection, crossover and mutation to improve the ability of global search. Finally, the nonlinear optimization algorithm is used to increase the ability of local search of the algorithm. Through this improvement, the convergence speed of the ant colony algorithm is improved and the problem of easy to fall into the optimal solution is solved, which is applied to the traveling salesman problem.
Bibliografie:ObjectType-Conference Proceeding-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1802/3/032067