Learning-Augmented Online Minimization of Age of Information and Transmission Costs
We consider a discrete-time system where a resource-constrained source (e.g., a small sensor) transmits its time-sensitive data to a destination over a time-varying wireless channel. Each transmission incurs a fixed transmission cost (e.g., energy cost), and no transmission results in a staleness co...
Saved in:
| Published in: | IEEE transactions on network science and engineering Vol. 12; no. 5; pp. 3480 - 3496 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2327-4697, 2334-329X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We consider a discrete-time system where a resource-constrained source (e.g., a small sensor) transmits its time-sensitive data to a destination over a time-varying wireless channel. Each transmission incurs a fixed transmission cost (e.g., energy cost), and no transmission results in a staleness cost represented by the Age-of-Information . The source must balance the tradeoff between transmission and staleness costs. To address this challenge, we develop a robust online algorithm to minimize the sum of transmission and staleness costs, ensuring a worst-case performance guarantee. While online algorithms are robust, they are usually overly conservative and may have a poor average performance in typical scenarios. In contrast, by leveraging historical data and prediction models, machine learning (ML) algorithms perform well in average cases. However, they typically lack worst-case performance guarantees. To achieve the best of both worlds, we design a learning-augmented online algorithm that exhibits two desired properties: (i) consistency : closely approximating the optimal offline algorithm when the ML prediction is accurate and trusted; (ii) robustness : ensuring worst-case performance guarantee even ML predictions are inaccurate. Finally, we perform extensive simulations to show that our online algorithm performs well empirically and that our learning-augmented algorithm achieves both consistency and robustness. |
|---|---|
| AbstractList | We consider a discrete-time system where a resource-constrained source (e.g., a small sensor) transmits its time-sensitive data to a destination over a time-varying wireless channel. Each transmission incurs a fixed transmission cost (e.g., energy cost), and no transmission results in a staleness cost represented by the Age-of-Information. The source must balance the tradeoff between transmission and staleness costs. To address this challenge, we develop a robust online algorithm to minimize the sum of transmission and staleness costs, ensuring a worst-case performance guarantee. While online algorithms are robust, they are usually overly conservative and may have a poor average performance in typical scenarios. In contrast, by leveraging historical data and prediction models, machine learning (ML) algorithms perform well in average cases. However, they typically lack worst-case performance guarantees. To achieve the best of both worlds, we design a learning-augmented online algorithm that exhibits two desired properties: (i) consistency: closely approximating the optimal offline algorithm when the ML prediction is accurate and trusted; (ii) robustness: ensuring worst-case performance guarantee even ML predictions are inaccurate. Finally, we perform extensive simulations to show that our online algorithm performs well empirically and that our learning-augmented algorithm achieves both consistency and robustness. |
| Author | Ji, Bo Zhang, Keyuan Li, Bin Sun, Yin Liu, Zhongdong Hou, Y. Thomas |
| Author_xml | – sequence: 1 givenname: Zhongdong orcidid: 0000-0002-3410-0777 surname: Liu fullname: Liu, Zhongdong email: zhongdong@vt.edu organization: Department of Computer Science, Virginia Tech, Blacksburg, VA, USA – sequence: 2 givenname: Keyuan orcidid: 0009-0009-6268-9732 surname: Zhang fullname: Zhang, Keyuan email: keyuanz@vt.edu organization: Department of Computer Science, Virginia Tech, Blacksburg, VA, USA – sequence: 3 givenname: Bin orcidid: 0000-0001-6002-677X surname: Li fullname: Li, Bin email: binli@psu.edu organization: Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA – sequence: 4 givenname: Yin orcidid: 0000-0001-6811-984X surname: Sun fullname: Sun, Yin email: yzs0078@auburn.edu organization: Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA – sequence: 5 givenname: Y. Thomas orcidid: 0000-0003-3716-5768 surname: Hou fullname: Hou, Y. Thomas email: thou@vt.edu organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA – sequence: 6 givenname: Bo orcidid: 0000-0003-0149-7509 surname: Ji fullname: Ji, Bo email: boji@vt.edu organization: Department of Computer Science, Virginia Tech, Blacksburg, VA, USA |
| BookMark | eNpNkEFLAzEQhYNUsNb-AMHDguetSWaTbI6lVC1Ue2gFbyG7m5SUblKT7UF_vbvUg6c3DO_N8L5bNPLBG4TuCZ4RguXT7n27nFFM2QwYJwL4FRpTgCIHKj9Hw0xFXnApbtA0pQPGmNCSA8AYbddGR-_8Pp-f963xnWmyjT86b7I3513rfnTngs-CzeZ7M8jK2xDby1b7JttF7VPrUhoWi5C6dIeurT4mM_3TCfp4Xu4Wr_l687JazNd5TYuyyxvOsZW6ZlYWwCoiygIwAw2VhkbLpqkqA5ZhywUnYI1lVld9QVE3lgFtYIIeL3dPMXydTerUIZyj718qoIUocF-Z9i5ycdUxpBSNVafoWh2_FcFqwKcGfGrAp_7w9ZmHS8YZY_75pcBYlvALMetuGg |
| CODEN | ITNSD5 |
| Cites_doi | 10.1109/JIOT.2023.3234582 10.1109/TNSE.2018.2848960 10.1109/COMST.2017.2652320 10.1109/JIOT.2023.3234872 10.1109/TIT.2022.3183045 10.1109/ACCESS.2019.2909530 10.1109/JSAC.2023.3234706 10.1145/3530894 10.1109/TIT.2017.2735804 10.1109/TSP.2020.2967146 10.3390/s17020282 10.1109/INFOCOMWKSHPS50562.2020.9163054 10.1109/ISIT.2019.8849808 10.1109/TWC.2023.3244930 10.1109/INFOCOMWKSHPS54753.2022.9798166 10.1109/INFOCOMWKSHPS57453.2023.10226091 10.1145/3419394.3423629 10.1007/s10796-014-9492-7 10.1145/380752.380845 10.1109/TIT.2021.3060387 10.1109/INFCOM.2012.6195689 10.1145/3447579 10.1109/INFOCOMWKSHPS61880.2024.10620883 10.1109/INFOCOM42981.2021.9488746 10.23919/WiOpt58741.2023.10349861 10.1561/0400000024 10.1017/CBO9780511804441 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TNSE.2025.3561736 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore Digital Libary (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2334-329X |
| EndPage | 3496 |
| ExternalDocumentID | 10_1109_TNSE_2025_3561736 10970098 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Nokia Corporation – fundername: IEEE INFOCOM 2024 Age and Semantics of Information Workshop – fundername: Commonwealth Cyber Initiative; Virginia Commonwealth Cyber Initiative funderid: 10.13039/100030807 – fundername: NSF grantid: CNS-2106427; CNS-2239677 – fundername: Army Research Office grantid: W911NF-21-1-0244; W911NF-24-1-0103 funderid: 10.13039/100000183 – fundername: ONR MURI grantid: N00014-19-1-2621 – fundername: Virginia Tech Institute for Critical Technology and Applied Science |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c248t-d660f9ac5f9435b17843053a3ba3da9ddbbe3f50f67613fef5fab3567cdf532d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001556069300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4697 |
| IngestDate | Sat Nov 01 15:09:31 EDT 2025 Sat Nov 29 07:36:57 EST 2025 Wed Sep 03 07:09:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-d660f9ac5f9435b17843053a3ba3da9ddbbe3f50f67613fef5fab3567cdf532d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6002-677X 0000-0001-6811-984X 0009-0009-6268-9732 0000-0003-0149-7509 0000-0002-3410-0777 0000-0003-3716-5768 |
| PQID | 3247404692 |
| PQPubID | 2040409 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3247404692 crossref_primary_10_1109_TNSE_2025_3561736 ieee_primary_10970098 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on network science and engineering |
| PublicationTitleAbbrev | TNSE |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 Bamas (ref23) 2020 ref30 ref11 Zhang (ref22) 2024 ref33 ref10 ref2 ref1 ref17 ref16 ref18 Bampis (ref20) 2025 Golowich (ref19) 2022 ref26 ref25 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Shen (ref24) 2025 |
| References_xml | – ident: ref4 doi: 10.1109/JIOT.2023.3234582 – ident: ref29 doi: 10.1109/TNSE.2018.2848960 – ident: ref33 doi: 10.1109/COMST.2017.2652320 – ident: ref10 doi: 10.1109/JIOT.2023.3234872 – ident: ref14 doi: 10.1109/TIT.2022.3183045 – ident: ref34 doi: 10.1109/ACCESS.2019.2909530 – ident: ref16 doi: 10.1109/JSAC.2023.3234706 – ident: ref25 doi: 10.1145/3530894 – ident: ref30 doi: 10.1109/TIT.2017.2735804 – ident: ref35 doi: 10.1109/TSP.2020.2967146 – ident: ref3 doi: 10.3390/s17020282 – ident: ref9 doi: 10.1109/INFOCOMWKSHPS50562.2020.9163054 – ident: ref7 doi: 10.1109/ISIT.2019.8849808 – ident: ref5 doi: 10.1109/TWC.2023.3244930 – ident: ref15 doi: 10.1109/INFOCOMWKSHPS54753.2022.9798166 – ident: ref17 doi: 10.1109/INFOCOMWKSHPS57453.2023.10226091 – start-page: 4548 volume-title: Proc. 35th Conf. Learn. Theory year: 2022 ident: ref19 article-title: Can Q-learning be improved with advice? – ident: ref28 doi: 10.1145/3419394.3423629 – ident: ref2 doi: 10.1007/s10796-014-9492-7 – ident: ref8 doi: 10.1145/380752.380845 – ident: ref12 doi: 10.1109/TIT.2021.3060387 – ident: ref6 doi: 10.1109/INFCOM.2012.6195689 – ident: ref18 doi: 10.1145/3447579 – ident: ref1 doi: 10.1109/INFOCOMWKSHPS61880.2024.10620883 – year: 2025 ident: ref20 article-title: Polynomial time learning-augmented algorithms for NP-hard permutation problems – start-page: 20083 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2020 ident: ref23 article-title: The primal-dual method for learning augmented algorithms – year: 2025 ident: ref24 article-title: Algorithms with calibrated machine learning predictions – ident: ref11 doi: 10.1109/INFOCOM42981.2021.9488746 – ident: ref13 doi: 10.23919/WiOpt58741.2023.10349861 – start-page: 20293 volume-title: Proc. AAAI Conf. Artif. Intell. year: 2024 ident: ref22 article-title: Learning-augmented online algorithm for two-level ski-rental problem – ident: ref26 doi: 10.1561/0400000024 – ident: ref27 doi: 10.1017/CBO9780511804441 |
| SSID | ssj0001286333 |
| Score | 2.3159606 |
| Snippet | We consider a discrete-time system where a resource-constrained source (e.g., a small sensor) transmits its time-sensitive data to a destination over a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3480 |
| SubjectTerms | Age-of-information Algorithms Approximation algorithms Consistency Costs Data integrity Discrete time systems Energy costs Internet of Things learning-augmented algorithm Machine learning Machine learning algorithms online algorithm Optimization Prediction algorithms Prediction models Robustness Staling transmission cost Uncertainty Wireless sensor networks |
| Title | Learning-Augmented Online Minimization of Age of Information and Transmission Costs |
| URI | https://ieeexplore.ieee.org/document/10970098 https://www.proquest.com/docview/3247404692 |
| Volume | 12 |
| WOSCitedRecordID | wos001556069300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2327-4697 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-44UEPfk6cTsnBk9CtbdqmOY6x4cUhbMJuJZ9jB1tZO_9-kzTDgXiwl4aShvDea99X3u8BPIk0EjyjIuCJLclhsTIjpoOE5CJNGIt0wl2zCTKf56sVffPF6q4WRinlDp-poR26XL6sxM6GykY2W2oBMDvQIYS0xVoHAZU8wxj7zKWZOlrOF1PjAcbpEBsrgTgU5h_d45qp_PoDO7UyO__nhi7gzNuPaNwy_BKOVHkFpweogtew8Jip62C8WzvMTYlaRFH0uik3H77yElUajdfK3nxNknvKSomcAjMCYCNpaFLVTd2D99l0OXkJfO-EQMRJ3gQyy0JNmUg1NQYRj0husb0ww5xhyaiUnCus01BnxCh0rXSqGTdkIkLqFMcS30C3rEp1CyiixIgbNovJMFGY5zQSxnHRmVnLXLQPz3uqFp8tREbhXIuQFpYFhWVB4VnQh54l48HEloJ9GOwZUfivqC6MsUcS68DHd3-8dg8ndvX20NcAus12px7gWHw1m3r76ATkG34gvFA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBZ8Vq1Rw8CWmT7Oaxx1JaKrZFaIXewj5LDybSh7_f3c0WC-LBXLKEzSbMTDKvnW8AnngccpYQ7jNsSnJoJPWIKh-nGY8xpaHCzDabSMfjbDYjb65Y3dbCSCnt5jPZMkObyxcl35hQWdtkSw0A5j4cxBhHYVWutRNSyRKEkMtd6snt6XjS0z5gFLeQthNSi8P8o31sO5Vf_2CrWPpn_3ylczh1FqTXqVh-AXuyuISTHVzBK5g41NS539nMLeqm8CpMUW-0KBYfrvbSK5XXmUtzclVJ9iothGdVmBYBE0vzuuVqvarDe7837Q581z3B5xHO1r5IkkARymNFtEnEwjQz6F6IIkaRoEQIxiRScaCSVKt0JVWsKNNkSrlQMYoEuoZaURbyBryQpFrgkF5MBFgilpGQa9dFJXotfZAGPG-pmn9WIBm5dS4CkhsW5IYFuWNBA-qGjDsTKwo2oLllRO6-o1Wuzb0UGxc-uv3jtkc4GkxHw3z4Mn69g2PzpGoLWBNq6-VG3sMh_1ovVssHKyzfc9m_lw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Augmented+Online+Minimization+of+Age+of+Information+and+Transmission+Costs&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Liu%2C+Zhongdong&rft.au=Zhang%2C+Keyuan&rft.au=Li%2C+Bin&rft.au=Sun%2C+Yin&rft.date=2025-09-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=12&rft.issue=5&rft.spage=3480&rft.epage=3496&rft_id=info:doi/10.1109%2FTNSE.2025.3561736&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2025_3561736 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |