Learning-Augmented Online Minimization of Age of Information and Transmission Costs

We consider a discrete-time system where a resource-constrained source (e.g., a small sensor) transmits its time-sensitive data to a destination over a time-varying wireless channel. Each transmission incurs a fixed transmission cost (e.g., energy cost), and no transmission results in a staleness co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on network science and engineering Vol. 12; no. 5; pp. 3480 - 3496
Main Authors: Liu, Zhongdong, Zhang, Keyuan, Li, Bin, Sun, Yin, Hou, Y. Thomas, Ji, Bo
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2327-4697, 2334-329X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider a discrete-time system where a resource-constrained source (e.g., a small sensor) transmits its time-sensitive data to a destination over a time-varying wireless channel. Each transmission incurs a fixed transmission cost (e.g., energy cost), and no transmission results in a staleness cost represented by the Age-of-Information . The source must balance the tradeoff between transmission and staleness costs. To address this challenge, we develop a robust online algorithm to minimize the sum of transmission and staleness costs, ensuring a worst-case performance guarantee. While online algorithms are robust, they are usually overly conservative and may have a poor average performance in typical scenarios. In contrast, by leveraging historical data and prediction models, machine learning (ML) algorithms perform well in average cases. However, they typically lack worst-case performance guarantees. To achieve the best of both worlds, we design a learning-augmented online algorithm that exhibits two desired properties: (i) consistency : closely approximating the optimal offline algorithm when the ML prediction is accurate and trusted; (ii) robustness : ensuring worst-case performance guarantee even ML predictions are inaccurate. Finally, we perform extensive simulations to show that our online algorithm performs well empirically and that our learning-augmented algorithm achieves both consistency and robustness.
AbstractList We consider a discrete-time system where a resource-constrained source (e.g., a small sensor) transmits its time-sensitive data to a destination over a time-varying wireless channel. Each transmission incurs a fixed transmission cost (e.g., energy cost), and no transmission results in a staleness cost represented by the Age-of-Information . The source must balance the tradeoff between transmission and staleness costs. To address this challenge, we develop a robust online algorithm to minimize the sum of transmission and staleness costs, ensuring a worst-case performance guarantee. While online algorithms are robust, they are usually overly conservative and may have a poor average performance in typical scenarios. In contrast, by leveraging historical data and prediction models, machine learning (ML) algorithms perform well in average cases. However, they typically lack worst-case performance guarantees. To achieve the best of both worlds, we design a learning-augmented online algorithm that exhibits two desired properties: (i) consistency : closely approximating the optimal offline algorithm when the ML prediction is accurate and trusted; (ii) robustness : ensuring worst-case performance guarantee even ML predictions are inaccurate. Finally, we perform extensive simulations to show that our online algorithm performs well empirically and that our learning-augmented algorithm achieves both consistency and robustness.
Author Ji, Bo
Zhang, Keyuan
Li, Bin
Sun, Yin
Liu, Zhongdong
Hou, Y. Thomas
Author_xml – sequence: 1
  givenname: Zhongdong
  orcidid: 0000-0002-3410-0777
  surname: Liu
  fullname: Liu, Zhongdong
  email: zhongdong@vt.edu
  organization: Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
– sequence: 2
  givenname: Keyuan
  orcidid: 0009-0009-6268-9732
  surname: Zhang
  fullname: Zhang, Keyuan
  email: keyuanz@vt.edu
  organization: Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
– sequence: 3
  givenname: Bin
  orcidid: 0000-0001-6002-677X
  surname: Li
  fullname: Li, Bin
  email: binli@psu.edu
  organization: Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
– sequence: 4
  givenname: Yin
  orcidid: 0000-0001-6811-984X
  surname: Sun
  fullname: Sun, Yin
  email: yzs0078@auburn.edu
  organization: Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
– sequence: 5
  givenname: Y. Thomas
  orcidid: 0000-0003-3716-5768
  surname: Hou
  fullname: Hou, Y. Thomas
  email: thou@vt.edu
  organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
– sequence: 6
  givenname: Bo
  orcidid: 0000-0003-0149-7509
  surname: Ji
  fullname: Ji, Bo
  email: boji@vt.edu
  organization: Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
BookMark eNpNkEFLAzEQhYNUsNb-AMHDguetSWaTbI6lVC1Ue2gFbyG7m5SUblKT7UF_vbvUg6c3DO_N8L5bNPLBG4TuCZ4RguXT7n27nFFM2QwYJwL4FRpTgCIHKj9Hw0xFXnApbtA0pQPGmNCSA8AYbddGR-_8Pp-f963xnWmyjT86b7I3513rfnTngs-CzeZ7M8jK2xDby1b7JttF7VPrUhoWi5C6dIeurT4mM_3TCfp4Xu4Wr_l687JazNd5TYuyyxvOsZW6ZlYWwCoiygIwAw2VhkbLpqkqA5ZhywUnYI1lVld9QVE3lgFtYIIeL3dPMXydTerUIZyj718qoIUocF-Z9i5ycdUxpBSNVafoWh2_FcFqwKcGfGrAp_7w9ZmHS8YZY_75pcBYlvALMetuGg
CODEN ITNSD5
Cites_doi 10.1109/JIOT.2023.3234582
10.1109/TNSE.2018.2848960
10.1109/COMST.2017.2652320
10.1109/JIOT.2023.3234872
10.1109/TIT.2022.3183045
10.1109/ACCESS.2019.2909530
10.1109/JSAC.2023.3234706
10.1145/3530894
10.1109/TIT.2017.2735804
10.1109/TSP.2020.2967146
10.3390/s17020282
10.1109/INFOCOMWKSHPS50562.2020.9163054
10.1109/ISIT.2019.8849808
10.1109/TWC.2023.3244930
10.1109/INFOCOMWKSHPS54753.2022.9798166
10.1109/INFOCOMWKSHPS57453.2023.10226091
10.1145/3419394.3423629
10.1007/s10796-014-9492-7
10.1145/380752.380845
10.1109/TIT.2021.3060387
10.1109/INFCOM.2012.6195689
10.1145/3447579
10.1109/INFOCOMWKSHPS61880.2024.10620883
10.1109/INFOCOM42981.2021.9488746
10.23919/WiOpt58741.2023.10349861
10.1561/0400000024
10.1017/CBO9780511804441
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2025.3561736
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 3496
ExternalDocumentID 10_1109_TNSE_2025_3561736
10970098
Genre orig-research
GrantInformation_xml – fundername: Nokia Corporation
– fundername: IEEE INFOCOM 2024 Age and Semantics of Information Workshop
– fundername: Commonwealth Cyber Initiative; Virginia Commonwealth Cyber Initiative
  funderid: 10.13039/100030807
– fundername: NSF
  grantid: CNS-2106427; CNS-2239677
– fundername: Army Research Office
  grantid: W911NF-21-1-0244; W911NF-24-1-0103
  funderid: 10.13039/100000183
– fundername: ONR MURI
  grantid: N00014-19-1-2621
– fundername: Virginia Tech Institute for Critical Technology and Applied Science
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c248t-d660f9ac5f9435b17843053a3ba3da9ddbbe3f50f67613fef5fab3567cdf532d3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001556069300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4697
IngestDate Sat Nov 01 15:09:31 EDT 2025
Sat Nov 29 07:36:57 EST 2025
Wed Sep 03 07:09:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-d660f9ac5f9435b17843053a3ba3da9ddbbe3f50f67613fef5fab3567cdf532d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6002-677X
0000-0001-6811-984X
0009-0009-6268-9732
0000-0003-0149-7509
0000-0002-3410-0777
0000-0003-3716-5768
PQID 3247404692
PQPubID 2040409
PageCount 17
ParticipantIDs proquest_journals_3247404692
crossref_primary_10_1109_TNSE_2025_3561736
ieee_primary_10970098
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
Bamas (ref23) 2020
ref30
ref11
Zhang (ref22) 2024
ref33
ref10
ref2
ref1
ref17
ref16
ref18
Bampis (ref20) 2025
Golowich (ref19) 2022
ref26
ref25
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Shen (ref24) 2025
References_xml – ident: ref4
  doi: 10.1109/JIOT.2023.3234582
– ident: ref29
  doi: 10.1109/TNSE.2018.2848960
– ident: ref33
  doi: 10.1109/COMST.2017.2652320
– ident: ref10
  doi: 10.1109/JIOT.2023.3234872
– ident: ref14
  doi: 10.1109/TIT.2022.3183045
– ident: ref34
  doi: 10.1109/ACCESS.2019.2909530
– ident: ref16
  doi: 10.1109/JSAC.2023.3234706
– ident: ref25
  doi: 10.1145/3530894
– ident: ref30
  doi: 10.1109/TIT.2017.2735804
– ident: ref35
  doi: 10.1109/TSP.2020.2967146
– ident: ref3
  doi: 10.3390/s17020282
– ident: ref9
  doi: 10.1109/INFOCOMWKSHPS50562.2020.9163054
– ident: ref7
  doi: 10.1109/ISIT.2019.8849808
– ident: ref5
  doi: 10.1109/TWC.2023.3244930
– ident: ref15
  doi: 10.1109/INFOCOMWKSHPS54753.2022.9798166
– ident: ref17
  doi: 10.1109/INFOCOMWKSHPS57453.2023.10226091
– start-page: 4548
  volume-title: Proc. 35th Conf. Learn. Theory
  year: 2022
  ident: ref19
  article-title: Can Q-learning be improved with advice?
– ident: ref28
  doi: 10.1145/3419394.3423629
– ident: ref2
  doi: 10.1007/s10796-014-9492-7
– ident: ref8
  doi: 10.1145/380752.380845
– ident: ref12
  doi: 10.1109/TIT.2021.3060387
– ident: ref6
  doi: 10.1109/INFCOM.2012.6195689
– ident: ref18
  doi: 10.1145/3447579
– ident: ref1
  doi: 10.1109/INFOCOMWKSHPS61880.2024.10620883
– year: 2025
  ident: ref20
  article-title: Polynomial time learning-augmented algorithms for NP-hard permutation problems
– start-page: 20083
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2020
  ident: ref23
  article-title: The primal-dual method for learning augmented algorithms
– year: 2025
  ident: ref24
  article-title: Algorithms with calibrated machine learning predictions
– ident: ref11
  doi: 10.1109/INFOCOM42981.2021.9488746
– ident: ref13
  doi: 10.23919/WiOpt58741.2023.10349861
– start-page: 20293
  volume-title: Proc. AAAI Conf. Artif. Intell.
  year: 2024
  ident: ref22
  article-title: Learning-augmented online algorithm for two-level ski-rental problem
– ident: ref26
  doi: 10.1561/0400000024
– ident: ref27
  doi: 10.1017/CBO9780511804441
SSID ssj0001286333
Score 2.3159606
Snippet We consider a discrete-time system where a resource-constrained source (e.g., a small sensor) transmits its time-sensitive data to a destination over a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3480
SubjectTerms Age-of-information
Algorithms
Approximation algorithms
Consistency
Costs
Data integrity
Discrete time systems
Energy costs
Internet of Things
learning-augmented algorithm
Machine learning
Machine learning algorithms
online algorithm
Optimization
Prediction algorithms
Prediction models
Robustness
Staling
transmission cost
Uncertainty
Wireless sensor networks
Title Learning-Augmented Online Minimization of Age of Information and Transmission Costs
URI https://ieeexplore.ieee.org/document/10970098
https://www.proquest.com/docview/3247404692
Volume 12
WOSCitedRecordID wos001556069300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-44UEPfk6cTunBk9Cta5omOY6x4cUhbMJuJZ9jBztZO_9-kzTDgXjw1FKSUt4v6fvK-z2AJ8GkzCmXsR4KbB0UymIuBIkTbZhWnGGquW82QWYzulyyt1Cs7mthtNb-8Jnuu1ufy1cbuXOhsoHLljoCzBa0CCFNsdZBQIXmCKGQubRDB4vZfGI9wBT3kbUSiGdh_tE9vpnKrz-wVyvT839-0AWcBfsxGjWAX8KRLq_g9IBV8BrmgTN1FY92K8-5qaKGUTR6XZfrj1B5GW1MNFppdwk1Sf4pL1XkFZhdAC6SFo03VV114H06WYxf4tA7IZZpRutY5XliGJfYMGsQiSGhjtsLcSQ4shAoJYRGBicmJ1ahG22w4cKKiUhlMEoVuoF2uSn1LUSZECwb0oQnMs8kzTjBaWYdcmHnU8LTLjzvpVp8NhQZhXctElY4CAoHQREg6ELHifFgYCPBLvT2QBRhF1WFNfZI5hz49O6Pafdw4t7eHPrqQbve7vQDHMuvel1tH_0C-QYkjrwK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFNSDnxOnU3vwJFS7JmmS45ANRR2CE7yVfI4d7GQf_v0maYYD8eCppSS0vF_S95X3ewBXkitVMKFS05HEOSiMp0JKmmbGcqMFJ8yI0GyCDgbs_Z2_xGL1UAtjjAmHz8yNvw25fD1RCx8qu_XZUk-AuQ4bBOO8U5drrYRUWIEQirlLN_h2OHjtOR8wJzfI2Qk08DD_aJ_QTuXXPzgolv7ePz9pH3ajBZl0a8gPYM1Uh7Czwit4BK-RNXWUdhejwLqpk5pTNHkeV-OPWHuZTGzSHRl_iVVJ4amodBJUmFsCPpaW3E1m81kT3vq94d19GrsnpCrHbJ7qosgsF4pY7kwi2aHMs3shgaRADgStpTTIkswW1Kl0ayyxQjoxUaUtQblGx9CoJpU5gQRLyXGHZSJTBVYMC0py7Fxy6eYzKvIWXC-lWn7WJBllcC4yXnoISg9BGSFoQdOLcWVgLcEWtJdAlHEfzUpn7lHsXfj89I9pl7B1P3x-Kp8eBo9nsO3fVB8Ba0NjPl2Yc9hUX_PxbHoRFss3F-u_UQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Augmented+Online+Minimization+of+Age+of+Information+and+Transmission+Costs&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Liu%2C+Zhongdong&rft.au=Zhang%2C+Keyuan&rft.au=Li%2C+Bin&rft.au=Sun%2C+Yin&rft.date=2025-09-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=12&rft.issue=5&rft.spage=3480&rft.epage=3496&rft_id=info:doi/10.1109%2FTNSE.2025.3561736&rft.externalDocID=10970098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon