Distributionally Robust Optimization for STAP With Finite Samples

Drawing on the minimization of worst-case maximum likelihood (ML) estimation, this article develops a robust inverse clutter-plus-noise covariance matrix (CNCM) estimator for space-time adaptive processing against Gaussian clutter background at low sample support without any prior knowledge. Leverag...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems Vol. 61; no. 5; pp. 11420 - 11436
Main Authors: Wang, Yalong, Zhang, Xuejing, Wang, Zhihang, Li, Jun, He, Zishu
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9251, 1557-9603
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drawing on the minimization of worst-case maximum likelihood (ML) estimation, this article develops a robust inverse clutter-plus-noise covariance matrix (CNCM) estimator for space-time adaptive processing against Gaussian clutter background at low sample support without any prior knowledge. Leveraging the nonconvex uncertainty set for CNCMs, we formulate a distributionally robust optimization-based ML estimation problem with the Wasserstein metric. We validate that the resulting nonconvex problem is algorithmically tractable. To achieve this, we reformulate the problem as a finite-dimensional semidefinite program. To pursue lower computational complexity, we establish a closed-form solution framework by imposing the rotation-equivariant property. We theoretically prove the existence and uniqueness of the solution and address the challenge of adaptively choosing the uncertainty set size. Importantly, the solution composes a nonlinear shrinkage estimator that inherently preserves the order of sample eigenvalues without additional operations. Experiments with both simulated and measured clutter data confirm the superiority of the proposed estimator in terms of estimation accuracy and robustness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2025.3566360