Precision Meets Speed: An Attention Encoder-Decoder Network for Deforestation Segmentation
Deforestation remains a critical global environmental concern, requiring effective monitoring approaches. This letter presents a novel attention-powered encoder-decoder neural network designed to address the key challenges in deforestation mapping, including scale heterogeneity, temporal dynamics, a...
Uloženo v:
| Vydáno v: | IEEE geoscience and remote sensing letters Ročník 22; s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Deforestation remains a critical global environmental concern, requiring effective monitoring approaches. This letter presents a novel attention-powered encoder-decoder neural network designed to address the key challenges in deforestation mapping, including scale heterogeneity, temporal dynamics, and computational efficiency. The proposed framework integrates a modified YOLOv8 backbone, spatial attention (SA) mechanisms, and a conjugated Dice-Focal loss function to enhance sensitivity to small- and large-scale deforestation patterns in temporal remote sensing (RS) data. An extensive battery of tests was conducted using two datasets from the Amazon region, exploring both single-image and image-pair inputs under varying contextual and class balance conditions. The results attest to substantial improvements in accuracy and computational efficiency compared to 13 deep learning (DL) methods, establishing the proposed model as effective in deforestation monitoring scenarios, where accuracy, scalability, and computational cost are simultaneously critical. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1545-598X 1558-0571 |
| DOI: | 10.1109/LGRS.2025.3590585 |