Probabilistic Generative Approach for Ambiguity-Aware Parameter Extraction

Artificial neural networks (ANNs) are increasingly used for parameter extraction in semiconductor device modeling. However, in practice, a parameter ambiguity issue arises, where multiple parameter combinations produce identical drain current values (<inline-formula> <tex-math notation=&quo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices Vol. 72; no. 10; pp. 5544 - 5550
Main Authors: Zeng, Bolun, Tang, Zhenhua, Zhang, Yuanke, Li, Qingsong, Zhou, Changchun, Qiu, Liling, Chen, Yuefeng, Xiang, Zikun, Xu, Jun, Luo, Chao, Guo, Guoping
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9383, 1557-9646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial neural networks (ANNs) are increasingly used for parameter extraction in semiconductor device modeling. However, in practice, a parameter ambiguity issue arises, where multiple parameter combinations produce identical drain current values (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula>). To address this challenge, we introduce a novel probabilistic generative framework. Specifically, we utilize a conditional variational autoencoder (CVAE) to learn the latent distribution of ambiguous parameters (e.g., threshold voltage and mobility) and generate diverse possible candidate parameter sets conditioned on <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula> characteristics. By validating the <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula> characteristics of the candidates, we ultimately select the optimal parameter set. Experiments across different device sizes, process technologies, and operating conditions demonstrate the effectiveness of our model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2025.3594676