Probabilistic Generative Approach for Ambiguity-Aware Parameter Extraction
Artificial neural networks (ANNs) are increasingly used for parameter extraction in semiconductor device modeling. However, in practice, a parameter ambiguity issue arises, where multiple parameter combinations produce identical drain current values (<inline-formula> <tex-math notation=&quo...
Uloženo v:
| Vydáno v: | IEEE transactions on electron devices Ročník 72; číslo 10; s. 5544 - 5550 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9383, 1557-9646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Artificial neural networks (ANNs) are increasingly used for parameter extraction in semiconductor device modeling. However, in practice, a parameter ambiguity issue arises, where multiple parameter combinations produce identical drain current values (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula>). To address this challenge, we introduce a novel probabilistic generative framework. Specifically, we utilize a conditional variational autoencoder (CVAE) to learn the latent distribution of ambiguous parameters (e.g., threshold voltage and mobility) and generate diverse possible candidate parameter sets conditioned on <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula> characteristics. By validating the <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula> characteristics of the candidates, we ultimately select the optimal parameter set. Experiments across different device sizes, process technologies, and operating conditions demonstrate the effectiveness of our model. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9383 1557-9646 |
| DOI: | 10.1109/TED.2025.3594676 |