Step Size Adaptation for Accelerated Stochastic Momentum Algorithm Using SDE Modeling and Lyapunov Drift Minimization
Training machine learning models often involves solving high-dimensional stochastic optimization problems, where stochastic gradient-based algorithms are hindered by slow convergence. Although momentum-based methods perform well in deterministic settings, their effectiveness diminishes under gradien...
Uložené v:
| Vydané v: | IEEE transactions on signal processing Ročník 73; s. 3124 - 3139 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!