The complexity of subcube partition relates to the additive structure of the support
The subcube partition of a Boolean function is a partition of {0,1}n into the union of subcubes ∪iCi, such that the value of the function f is the same on each vector of Ci, i.e. for every i and x,y∈Ci, f(x)=f(y). The complexity of it denotes by HSCP(f) is the minimum number of subcubes in a subcube...
Uloženo v:
| Vydáno v: | Information and computation Ročník 299; s. 105170 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.08.2024
|
| Témata: | |
| ISSN: | 0890-5401, 1090-2651 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The subcube partition of a Boolean function is a partition of {0,1}n into the union of subcubes ∪iCi, such that the value of the function f is the same on each vector of Ci, i.e. for every i and x,y∈Ci, f(x)=f(y). The complexity of it denotes by HSCP(f) is the minimum number of subcubes in a subcube partition which computes the Boolean function f. We give a lower bound of the complexity of subcube partitions of Boolean function which relates the additive behaviour of the support and the influence of the function. |
|---|---|
| ISSN: | 0890-5401 1090-2651 |
| DOI: | 10.1016/j.ic.2024.105170 |