Radiation-Induced Soft Error Assessment of a Multithreaded MobileNet CNN Model Running in a Multicore Edge Processor
Convolutional neural networks (CNNs) have become a standard technology in numerous industrial Internet of Things (IoT) applications and sectors, such as automotive and aerospace. Recent advancements in hardware and software (e.g., application programming interface (API)/libraries) components have en...
Uloženo v:
| Vydáno v: | IEEE transactions on nuclear science Ročník 72; číslo 8; s. 2821 - 2829 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9499, 1558-1578 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Convolutional neural networks (CNNs) have become a standard technology in numerous industrial Internet of Things (IoT) applications and sectors, such as automotive and aerospace. Recent advancements in hardware and software (e.g., application programming interface (API)/libraries) components have enabled the efficient execution of multithreaded CNN models on edge devices. As the complexity and adoption of CNNs in safety-critical systems continue to grow, ensuring their resilience becomes key and increasingly challenging. In this context, this work promotes two original contributions: 1) the proposal of a multithreaded implementation of MobileNet, which achieves a <inline-formula> <tex-math notation="LaTeX">2.67\times </tex-math></inline-formula> speedup and an energy reduction of 16% with four worker threads, and 2) the first soft error reliability assessment of a multithreaded CNN model running in a multicore processor under high-energy and thermal neutron radiation flux. Results from the radiation campaigns, with more than 31k runs, suggest that multithreaded executions can increase the occurrence of critical faults by up to <inline-formula> <tex-math notation="LaTeX">5\times </tex-math></inline-formula>. Results also show a greater number of events during the thermal neutron campaign, and some input images are significantly more robust against silent data corruption (SDC) events. |
|---|---|
| AbstractList | Convolutional neural networks (CNNs) have become a standard technology in numerous industrial Internet of Things (IoT) applications and sectors, such as automotive and aerospace. Recent advancements in hardware and software (e.g., application programming interface (API)/libraries) components have enabled the efficient execution of multithreaded CNN models on edge devices. As the complexity and adoption of CNNs in safety-critical systems continue to grow, ensuring their resilience becomes key and increasingly challenging. In this context, this work promotes two original contributions: 1) the proposal of a multithreaded implementation of MobileNet, which achieves a [Formula Omitted] speedup and an energy reduction of 16% with four worker threads, and 2) the first soft error reliability assessment of a multithreaded CNN model running in a multicore processor under high-energy and thermal neutron radiation flux. Results from the radiation campaigns, with more than 31k runs, suggest that multithreaded executions can increase the occurrence of critical faults by up to [Formula Omitted]. Results also show a greater number of events during the thermal neutron campaign, and some input images are significantly more robust against silent data corruption (SDC) events. Convolutional neural networks (CNNs) have become a standard technology in numerous industrial Internet of Things (IoT) applications and sectors, such as automotive and aerospace. Recent advancements in hardware and software (e.g., application programming interface (API)/libraries) components have enabled the efficient execution of multithreaded CNN models on edge devices. As the complexity and adoption of CNNs in safety-critical systems continue to grow, ensuring their resilience becomes key and increasingly challenging. In this context, this work promotes two original contributions: 1) the proposal of a multithreaded implementation of MobileNet, which achieves a <inline-formula> <tex-math notation="LaTeX">2.67\times </tex-math></inline-formula> speedup and an energy reduction of 16% with four worker threads, and 2) the first soft error reliability assessment of a multithreaded CNN model running in a multicore processor under high-energy and thermal neutron radiation flux. Results from the radiation campaigns, with more than 31k runs, suggest that multithreaded executions can increase the occurrence of critical faults by up to <inline-formula> <tex-math notation="LaTeX">5\times </tex-math></inline-formula>. Results also show a greater number of events during the thermal neutron campaign, and some input images are significantly more robust against silent data corruption (SDC) events. |
| Author | Gava, Jonas Moraes, Fernando Sherjil, Areeb Laurini, Luiz H. Reis, Ricardo Ost, Luciano Bastos, Rodrigo Possamai Atukpor, Emmanuel |
| Author_xml | – sequence: 1 givenname: Jonas orcidid: 0000-0001-7113-6448 surname: Gava fullname: Gava, Jonas organization: Instituto de Informática, PGMicro, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil – sequence: 2 givenname: Areeb orcidid: 0009-0007-3825-1322 surname: Sherjil fullname: Sherjil, Areeb organization: Wolfson School, Loughborough University, Loughborough, U.K – sequence: 3 givenname: Luiz H. orcidid: 0009-0008-9562-1446 surname: Laurini fullname: Laurini, Luiz H. organization: Université Grenoble Alpes, CNRS, Grenoble INP, TIMA, Grenoble, France – sequence: 4 givenname: Emmanuel orcidid: 0009-0001-0627-1114 surname: Atukpor fullname: Atukpor, Emmanuel organization: Institut Laue-Langevin, Grenoble, France – sequence: 5 givenname: Rodrigo Possamai orcidid: 0000-0002-9964-0424 surname: Bastos fullname: Bastos, Rodrigo Possamai organization: Université Grenoble Alpes, CNRS, Grenoble INP, TIMA, Grenoble, France – sequence: 6 givenname: Fernando orcidid: 0000-0001-6126-6847 surname: Moraes fullname: Moraes, Fernando organization: School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil – sequence: 7 givenname: Ricardo orcidid: 0000-0001-5781-5858 surname: Reis fullname: Reis, Ricardo organization: Instituto de Informática, PGMicro, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil – sequence: 8 givenname: Luciano orcidid: 0000-0002-5160-5232 surname: Ost fullname: Ost, Luciano email: l.ost@lboro.ac.uk organization: Wolfson School, Loughborough University, Loughborough, U.K |
| BookMark | eNpFkE1LAzEQhoMo2FbvHjwEPG9Nspv9OJZStdCu0tbzkmYnNWWb1CR78N-b0orMYXjhmXnhGaJrYw0g9EDJmFJSPW_q9ZgRxscpL-NUV2hAOS8TyovyGg0IoWVSZVV1i4be72PMOOEDFFai1SJoa5K5aXsJLV5bFfDMOevwxHvw_gAmYKuwwMu-Czp8ORBtBJd2qzuoIeBpXcfUQodXvTHa7LA2f7i0DvCs3QH-cFbGd9bdoRslOg_3lz1Cny-zzfQtWby_zqeTRSJZVoREqIJWuSyZymXOgfCsyKqWy0LlVNCSiJIJwlJIGdtSrpRqBSFMSBBkW7AM0hF6Ov89Ovvdgw_N3vbOxMomjQ3RFOM8UuRMSWe9d6Cao9MH4X4aSpqT2ya6bU5um4vbePJ4PtEA8I9TUjCW5ukvLV93ZA |
| CODEN | IETNAE |
| Cites_doi | 10.1109/TNS.2023.3262448 10.1109/ISVLSI.2019.00099 10.1109/TNS.2018.2884460 10.1145/3180155.3180220 10.1109/TR.2018.2878387 10.1109/TCAD.2019.2944584 10.1109/TNS.2022.3142092 10.1109/TNS.2024.3378807 10.1109/ISVLSI59464.2023.10238535 10.1109/COASE.2018.8560564 10.1145/3526241.3530351 10.1145/1113841.1113843 10.1109/TNS.2022.3224538 10.1145/3063180 10.1109/LASCAS53948.2022.9789088 10.1109/TNS.2021.3062014 10.1109/TNS.2021.3050707 10.1109/ITC44170.2019.9000150 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 |
| DOI | 10.1109/TNS.2025.3585859 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Bacteriology Abstracts (Microbiology B) Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Engineered Materials Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-1578 |
| EndPage | 2829 |
| ExternalDocumentID | 10_1109_TNS_2025_3585859 11072236 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Technological Research Institute (IRT) Nanoelec grantid: ANR-10-AIRT-05 – fundername: French Program d’Investissements d’Avenir (PIA)] – fundername: Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) grantid: 21/2551-0002047-4 – fundername: Université Grenoble Alpes (UGA)/Laboratoire de Physique Subatomique et de Cosmologie (LPSC)/Generator of Neutrons for Science and Irradiations (GENESIS) Platform |
| GroupedDBID | .DC .GJ 0R~ 29I 3O- 4.4 53G 5GY 5RE 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETEA AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VOH AAYXX CITATION 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 |
| ID | FETCH-LOGICAL-c247t-af7196c82f6c65e054749d5c7f61a180a82a023e322b15fffda002acea0b724e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001555522300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9499 |
| IngestDate | Sat Nov 15 17:42:17 EST 2025 Sat Nov 29 07:38:49 EST 2025 Wed Aug 27 07:36:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-af7196c82f6c65e054749d5c7f61a180a82a023e322b15fffda002acea0b724e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0007-3825-1322 0000-0001-5781-5858 0009-0001-0627-1114 0000-0002-9964-0424 0009-0008-9562-1446 0000-0002-5160-5232 0000-0001-6126-6847 0000-0001-7113-6448 |
| PQID | 3247358255 |
| PQPubID | 85457 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1109_TNS_2025_3585859 ieee_primary_11072236 proquest_journals_3247358255 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on nuclear science |
| PublicationTitleAbbrev | TNS |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 (ref23) 2025 Kale (ref22) 2024 ref11 ref10 (ref25) 2024 ref2 ref17 (ref29) 2014 Hosseininoorbin (ref8) 2021 ref19 ref18 Vimal (ref1) 2021; 22 (ref24) 2024 ref20 ref28 ref27 ref7 ref9 Cai (ref4) ref3 (ref16) 2024 (ref21) 2024 (ref26) 2024 ref6 ref5 |
| References_xml | – ident: ref14 doi: 10.1109/TNS.2023.3262448 – volume: 22 start-page: 173 issue: 1 year: 2021 ident: ref1 article-title: IoT based smart health monitoring with CNN using edge computing publication-title: J. Internet Technol. – ident: ref6 doi: 10.1109/ISVLSI.2019.00099 – volume-title: MobileNet Implementation year: 2024 ident: ref16 – ident: ref18 doi: 10.1109/TNS.2018.2884460 – ident: ref3 doi: 10.1145/3180155.3180220 – ident: ref11 doi: 10.1109/TR.2018.2878387 – ident: ref7 doi: 10.1109/TCAD.2019.2944584 – ident: ref13 doi: 10.1109/TNS.2022.3142092 – ident: ref15 doi: 10.1109/TNS.2024.3378807 – ident: ref20 doi: 10.1109/ISVLSI59464.2023.10238535 – ident: ref2 doi: 10.1109/COASE.2018.8560564 – volume-title: DDR5: What is On-Die ECC? year: 2024 ident: ref26 – volume-title: Free Images year: 2025 ident: ref23 – ident: ref5 doi: 10.1145/3526241.3530351 – ident: ref28 doi: 10.1145/1113841.1113843 – volume-title: Pi 4 year: 2024 ident: ref24 – ident: ref10 doi: 10.1109/TNS.2022.3224538 – volume-title: Raspberry Pi 4 Model B Product Brief year: 2024 ident: ref25 – year: 2021 ident: ref8 article-title: Exploring deep neural networks on edge TPU publication-title: arXiv:2110.08826 – ident: ref27 doi: 10.1145/3063180 – ident: ref19 doi: 10.1109/LASCAS53948.2022.9789088 – ident: ref9 doi: 10.1109/TNS.2021.3062014 – volume-title: Loop Scheduling in OpenM year: 2024 ident: ref22 – start-page: 622 volume-title: Proc. Asian Conf. Mach. Learn. ident: ref4 article-title: NeuralPower: Predict and deploy energy-efficient convolutional neural networks – volume-title: Valgrind year: 2024 ident: ref21 – volume-title: Single Event Effects Test Method and Guidelines year: 2014 ident: ref29 – ident: ref12 doi: 10.1109/TNS.2021.3050707 – ident: ref17 doi: 10.1109/ITC44170.2019.9000150 |
| SSID | ssj0014505 |
| Score | 2.4543455 |
| Snippet | Convolutional neural networks (CNNs) have become a standard technology in numerous industrial Internet of Things (IoT) applications and sectors, such as... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2821 |
| SubjectTerms | Application programming interface Artificial neural networks Convolutional neural networks Energy efficiency Error correction codes Field programmable gate arrays Industrial applications Industrial Internet of Things Microprocessors MobileNet Multicore processing multicore processors multithreaded convolutional neural network (CNN) models Neural networks Neutron radiation Neutrons Radiation Radiation effects Reliability Reliability analysis Resilience Safety critical Single instruction multiple data soft error reliability Soft errors Thermal neutrons |
| Title | Radiation-Induced Soft Error Assessment of a Multithreaded MobileNet CNN Model Running in a Multicore Edge Processor |
| URI | https://ieeexplore.ieee.org/document/11072236 https://www.proquest.com/docview/3247358255 |
| Volume | 72 |
| WOSCitedRecordID | wos001555522300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014505 issn: 0018-9499 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5g4gAH3ojBQDlw4dCta9OkPU5oiAsVGiBxq9zEQUhoRV3H78dJOx5CHLj14KaVv9qO63w2YxephDIFKINYhBgIY02QAYRBWYIUFHFpk136YRMqz9Onp-yuI6t7Lgwi-sNnOHSXvpZvKr10v8pGLlehcCbX2bpSsiVrfZYM3Mqt2yULpkesapJhNnrI7ykTjJJhnLgyWPYjBvmhKr88sQ8v1zv_fLFdtt3tI_mkBX6PreF8n2196y54wJqZ6zvgFB-4AR0aDb8np8undV3VfPLZkpNXlgNvmbiELBgSvK1Kchc5Nvwqz7kbmPbKZ0s_3oi_zFfirgUmn5pn5B3foKoP2eP19OHqJuiGLAQ6EqoJwCoyQp1GVmqZIKGjRGYSrawcwzgNIY2A4jqS4ZfjxFprgJwoaISwVJHA-Ij15tUcjxnP4kTHlP5FsQARCQ1Cj0FihEpqq2PTZ5crtRdvbS-NwucgYVYQRIWDqOgg6rNDp-YvuU7DfTZYAVV01rYoaFOoHOM3SU7-uO2UbbrV25N7A9Zr6iWesQ393rws6nP_IX0A_U3G6g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9xADLYKrQQcaMtDLKXtHHrhEMhOZvI4IrQIVIgQLBK3yJnxIKRqU4Usvx_PJAtUFQduOTiZyF9sj-P5bIBfeYp1jlhHiYopUtbZqECMo7rGVHHE5U12HYZNZGWZ394WlwNZPXBhiCgcPqMDfxlq-bYxc_-r7NDnKhzO0iX4qJWScU_Xei4a-Gf3jpdtmBdZVCXj4nBaXnMuKPVBon0hrPgnCoWxKv_54hBgTj6_89W-wPqwkxRHPfRf4QPNNmDtVX_BTeiufOcBr_rIj-gwZMU1u10xadumFUfPTTlF4wSKnovL2KJlwYumZodRUieOy1L4kWl_xNU8DDgS97OFuG-CKSb2jsTAOGjaLbg5mUyPT6NhzEJkpMq6CF3GZmhy6VKTamJ8MlVYbTKXjnGcx5hL5MhObPr1WDvnLLIbRUMY15lUlGzD8qyZ0Q6IItEm4QRQJgqVVAaVGWNKkrLUOJPYEewv1F797btpVCELiYuKIao8RNUA0Qi2vJpf5AYNj2BvAVQ12NtDxdvCzHN-td5947afsHI6vTivzs_K399g1a_Un-Pbg-WundN3-GQeu_uH9kf4qJ4AgM3KMQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiation-Induced+Soft+Error+Assessment+of+a+Multithreaded+MobileNet+CNN+Model+Running+in+a+Multicore+Edge+Processor&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Gava%2C+Jonas&rft.au=Sherjil%2C+Areeb&rft.au=Laurini%2C+Luiz+H&rft.au=Atukpor%2C+Emmanuel&rft.date=2025-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9499&rft.eissn=1558-1578&rft.volume=72&rft.issue=11&rft.spage=2821&rft.epage=2829&rft_id=info:doi/10.1109%2FTNS.2025.3585859&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon |