Radiation-Induced Soft Error Assessment of a Multithreaded MobileNet CNN Model Running in a Multicore Edge Processor

Convolutional neural networks (CNNs) have become a standard technology in numerous industrial Internet of Things (IoT) applications and sectors, such as automotive and aerospace. Recent advancements in hardware and software (e.g., application programming interface (API)/libraries) components have en...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on nuclear science Ročník 72; číslo 8; s. 2821 - 2829
Hlavní autoři: Gava, Jonas, Sherjil, Areeb, Laurini, Luiz H., Atukpor, Emmanuel, Bastos, Rodrigo Possamai, Moraes, Fernando, Reis, Ricardo, Ost, Luciano
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9499, 1558-1578
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Convolutional neural networks (CNNs) have become a standard technology in numerous industrial Internet of Things (IoT) applications and sectors, such as automotive and aerospace. Recent advancements in hardware and software (e.g., application programming interface (API)/libraries) components have enabled the efficient execution of multithreaded CNN models on edge devices. As the complexity and adoption of CNNs in safety-critical systems continue to grow, ensuring their resilience becomes key and increasingly challenging. In this context, this work promotes two original contributions: 1) the proposal of a multithreaded implementation of MobileNet, which achieves a <inline-formula> <tex-math notation="LaTeX">2.67\times </tex-math></inline-formula> speedup and an energy reduction of 16% with four worker threads, and 2) the first soft error reliability assessment of a multithreaded CNN model running in a multicore processor under high-energy and thermal neutron radiation flux. Results from the radiation campaigns, with more than 31k runs, suggest that multithreaded executions can increase the occurrence of critical faults by up to <inline-formula> <tex-math notation="LaTeX">5\times </tex-math></inline-formula>. Results also show a greater number of events during the thermal neutron campaign, and some input images are significantly more robust against silent data corruption (SDC) events.
AbstractList Convolutional neural networks (CNNs) have become a standard technology in numerous industrial Internet of Things (IoT) applications and sectors, such as automotive and aerospace. Recent advancements in hardware and software (e.g., application programming interface (API)/libraries) components have enabled the efficient execution of multithreaded CNN models on edge devices. As the complexity and adoption of CNNs in safety-critical systems continue to grow, ensuring their resilience becomes key and increasingly challenging. In this context, this work promotes two original contributions: 1) the proposal of a multithreaded implementation of MobileNet, which achieves a [Formula Omitted] speedup and an energy reduction of 16% with four worker threads, and 2) the first soft error reliability assessment of a multithreaded CNN model running in a multicore processor under high-energy and thermal neutron radiation flux. Results from the radiation campaigns, with more than 31k runs, suggest that multithreaded executions can increase the occurrence of critical faults by up to [Formula Omitted]. Results also show a greater number of events during the thermal neutron campaign, and some input images are significantly more robust against silent data corruption (SDC) events.
Convolutional neural networks (CNNs) have become a standard technology in numerous industrial Internet of Things (IoT) applications and sectors, such as automotive and aerospace. Recent advancements in hardware and software (e.g., application programming interface (API)/libraries) components have enabled the efficient execution of multithreaded CNN models on edge devices. As the complexity and adoption of CNNs in safety-critical systems continue to grow, ensuring their resilience becomes key and increasingly challenging. In this context, this work promotes two original contributions: 1) the proposal of a multithreaded implementation of MobileNet, which achieves a <inline-formula> <tex-math notation="LaTeX">2.67\times </tex-math></inline-formula> speedup and an energy reduction of 16% with four worker threads, and 2) the first soft error reliability assessment of a multithreaded CNN model running in a multicore processor under high-energy and thermal neutron radiation flux. Results from the radiation campaigns, with more than 31k runs, suggest that multithreaded executions can increase the occurrence of critical faults by up to <inline-formula> <tex-math notation="LaTeX">5\times </tex-math></inline-formula>. Results also show a greater number of events during the thermal neutron campaign, and some input images are significantly more robust against silent data corruption (SDC) events.
Author Gava, Jonas
Moraes, Fernando
Sherjil, Areeb
Laurini, Luiz H.
Reis, Ricardo
Ost, Luciano
Bastos, Rodrigo Possamai
Atukpor, Emmanuel
Author_xml – sequence: 1
  givenname: Jonas
  orcidid: 0000-0001-7113-6448
  surname: Gava
  fullname: Gava, Jonas
  organization: Instituto de Informática, PGMicro, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
– sequence: 2
  givenname: Areeb
  orcidid: 0009-0007-3825-1322
  surname: Sherjil
  fullname: Sherjil, Areeb
  organization: Wolfson School, Loughborough University, Loughborough, U.K
– sequence: 3
  givenname: Luiz H.
  orcidid: 0009-0008-9562-1446
  surname: Laurini
  fullname: Laurini, Luiz H.
  organization: Université Grenoble Alpes, CNRS, Grenoble INP, TIMA, Grenoble, France
– sequence: 4
  givenname: Emmanuel
  orcidid: 0009-0001-0627-1114
  surname: Atukpor
  fullname: Atukpor, Emmanuel
  organization: Institut Laue-Langevin, Grenoble, France
– sequence: 5
  givenname: Rodrigo Possamai
  orcidid: 0000-0002-9964-0424
  surname: Bastos
  fullname: Bastos, Rodrigo Possamai
  organization: Université Grenoble Alpes, CNRS, Grenoble INP, TIMA, Grenoble, France
– sequence: 6
  givenname: Fernando
  orcidid: 0000-0001-6126-6847
  surname: Moraes
  fullname: Moraes, Fernando
  organization: School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
– sequence: 7
  givenname: Ricardo
  orcidid: 0000-0001-5781-5858
  surname: Reis
  fullname: Reis, Ricardo
  organization: Instituto de Informática, PGMicro, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
– sequence: 8
  givenname: Luciano
  orcidid: 0000-0002-5160-5232
  surname: Ost
  fullname: Ost, Luciano
  email: l.ost@lboro.ac.uk
  organization: Wolfson School, Loughborough University, Loughborough, U.K
BookMark eNpFkE1LAzEQhoMo2FbvHjwEPG9Nspv9OJZStdCu0tbzkmYnNWWb1CR78N-b0orMYXjhmXnhGaJrYw0g9EDJmFJSPW_q9ZgRxscpL-NUV2hAOS8TyovyGg0IoWVSZVV1i4be72PMOOEDFFai1SJoa5K5aXsJLV5bFfDMOevwxHvw_gAmYKuwwMu-Czp8ORBtBJd2qzuoIeBpXcfUQodXvTHa7LA2f7i0DvCs3QH-cFbGd9bdoRslOg_3lz1Cny-zzfQtWby_zqeTRSJZVoREqIJWuSyZymXOgfCsyKqWy0LlVNCSiJIJwlJIGdtSrpRqBSFMSBBkW7AM0hF6Ov89Ovvdgw_N3vbOxMomjQ3RFOM8UuRMSWe9d6Cao9MH4X4aSpqT2ya6bU5um4vbePJ4PtEA8I9TUjCW5ukvLV93ZA
CODEN IETNAE
Cites_doi 10.1109/TNS.2023.3262448
10.1109/ISVLSI.2019.00099
10.1109/TNS.2018.2884460
10.1145/3180155.3180220
10.1109/TR.2018.2878387
10.1109/TCAD.2019.2944584
10.1109/TNS.2022.3142092
10.1109/TNS.2024.3378807
10.1109/ISVLSI59464.2023.10238535
10.1109/COASE.2018.8560564
10.1145/3526241.3530351
10.1145/1113841.1113843
10.1109/TNS.2022.3224538
10.1145/3063180
10.1109/LASCAS53948.2022.9789088
10.1109/TNS.2021.3062014
10.1109/TNS.2021.3050707
10.1109/ITC44170.2019.9000150
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
DOI 10.1109/TNS.2025.3585859
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Engineered Materials Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1578
EndPage 2829
ExternalDocumentID 10_1109_TNS_2025_3585859
11072236
Genre orig-research
GrantInformation_xml – fundername: Technological Research Institute (IRT) Nanoelec
  grantid: ANR-10-AIRT-05
– fundername: French Program d’Investissements d’Avenir (PIA)]
– fundername: Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)
  grantid: 21/2551-0002047-4
– fundername: Université Grenoble Alpes (UGA)/Laboratoire de Physique Subatomique et de Cosmologie (LPSC)/Generator of Neutrons for Science and Irradiations (GENESIS) Platform
GroupedDBID .DC
.GJ
0R~
29I
3O-
4.4
53G
5GY
5RE
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETEA
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VOH
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
ID FETCH-LOGICAL-c247t-af7196c82f6c65e054749d5c7f61a180a82a023e322b15fffda002acea0b724e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001555522300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9499
IngestDate Sat Nov 15 17:42:17 EST 2025
Sat Nov 29 07:38:49 EST 2025
Wed Aug 27 07:36:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-af7196c82f6c65e054749d5c7f61a180a82a023e322b15fffda002acea0b724e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-3825-1322
0000-0001-5781-5858
0009-0001-0627-1114
0000-0002-9964-0424
0009-0008-9562-1446
0000-0002-5160-5232
0000-0001-6126-6847
0000-0001-7113-6448
PQID 3247358255
PQPubID 85457
PageCount 9
ParticipantIDs crossref_primary_10_1109_TNS_2025_3585859
ieee_primary_11072236
proquest_journals_3247358255
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on nuclear science
PublicationTitleAbbrev TNS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
(ref23) 2025
Kale (ref22) 2024
ref11
ref10
(ref25) 2024
ref2
ref17
(ref29) 2014
Hosseininoorbin (ref8) 2021
ref19
ref18
Vimal (ref1) 2021; 22
(ref24) 2024
ref20
ref28
ref27
ref7
ref9
Cai (ref4)
ref3
(ref16) 2024
(ref21) 2024
(ref26) 2024
ref6
ref5
References_xml – ident: ref14
  doi: 10.1109/TNS.2023.3262448
– volume: 22
  start-page: 173
  issue: 1
  year: 2021
  ident: ref1
  article-title: IoT based smart health monitoring with CNN using edge computing
  publication-title: J. Internet Technol.
– ident: ref6
  doi: 10.1109/ISVLSI.2019.00099
– volume-title: MobileNet Implementation
  year: 2024
  ident: ref16
– ident: ref18
  doi: 10.1109/TNS.2018.2884460
– ident: ref3
  doi: 10.1145/3180155.3180220
– ident: ref11
  doi: 10.1109/TR.2018.2878387
– ident: ref7
  doi: 10.1109/TCAD.2019.2944584
– ident: ref13
  doi: 10.1109/TNS.2022.3142092
– ident: ref15
  doi: 10.1109/TNS.2024.3378807
– ident: ref20
  doi: 10.1109/ISVLSI59464.2023.10238535
– ident: ref2
  doi: 10.1109/COASE.2018.8560564
– volume-title: DDR5: What is On-Die ECC?
  year: 2024
  ident: ref26
– volume-title: Free Images
  year: 2025
  ident: ref23
– ident: ref5
  doi: 10.1145/3526241.3530351
– ident: ref28
  doi: 10.1145/1113841.1113843
– volume-title: Pi 4
  year: 2024
  ident: ref24
– ident: ref10
  doi: 10.1109/TNS.2022.3224538
– volume-title: Raspberry Pi 4 Model B Product Brief
  year: 2024
  ident: ref25
– year: 2021
  ident: ref8
  article-title: Exploring deep neural networks on edge TPU
  publication-title: arXiv:2110.08826
– ident: ref27
  doi: 10.1145/3063180
– ident: ref19
  doi: 10.1109/LASCAS53948.2022.9789088
– ident: ref9
  doi: 10.1109/TNS.2021.3062014
– volume-title: Loop Scheduling in OpenM
  year: 2024
  ident: ref22
– start-page: 622
  volume-title: Proc. Asian Conf. Mach. Learn.
  ident: ref4
  article-title: NeuralPower: Predict and deploy energy-efficient convolutional neural networks
– volume-title: Valgrind
  year: 2024
  ident: ref21
– volume-title: Single Event Effects Test Method and Guidelines
  year: 2014
  ident: ref29
– ident: ref12
  doi: 10.1109/TNS.2021.3050707
– ident: ref17
  doi: 10.1109/ITC44170.2019.9000150
SSID ssj0014505
Score 2.4543455
Snippet Convolutional neural networks (CNNs) have become a standard technology in numerous industrial Internet of Things (IoT) applications and sectors, such as...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2821
SubjectTerms Application programming interface
Artificial neural networks
Convolutional neural networks
Energy efficiency
Error correction codes
Field programmable gate arrays
Industrial applications
Industrial Internet of Things
Microprocessors
MobileNet
Multicore processing
multicore processors
multithreaded convolutional neural network (CNN) models
Neural networks
Neutron radiation
Neutrons
Radiation
Radiation effects
Reliability
Reliability analysis
Resilience
Safety critical
Single instruction multiple data
soft error reliability
Soft errors
Thermal neutrons
Title Radiation-Induced Soft Error Assessment of a Multithreaded MobileNet CNN Model Running in a Multicore Edge Processor
URI https://ieeexplore.ieee.org/document/11072236
https://www.proquest.com/docview/3247358255
Volume 72
WOSCitedRecordID wos001555522300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014505
  issn: 0018-9499
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5g4gAH3ojBQDlw4dCta9OkPU5oiAsVGiBxq9zEQUhoRV3H78dJOx5CHLj14KaVv9qO63w2YxephDIFKINYhBgIY02QAYRBWYIUFHFpk136YRMqz9Onp-yuI6t7Lgwi-sNnOHSXvpZvKr10v8pGLlehcCbX2bpSsiVrfZYM3Mqt2yULpkesapJhNnrI7ykTjJJhnLgyWPYjBvmhKr88sQ8v1zv_fLFdtt3tI_mkBX6PreF8n2196y54wJqZ6zvgFB-4AR0aDb8np8undV3VfPLZkpNXlgNvmbiELBgSvK1Kchc5Nvwqz7kbmPbKZ0s_3oi_zFfirgUmn5pn5B3foKoP2eP19OHqJuiGLAQ6EqoJwCoyQp1GVmqZIKGjRGYSrawcwzgNIY2A4jqS4ZfjxFprgJwoaISwVJHA-Ij15tUcjxnP4kTHlP5FsQARCQ1Cj0FihEpqq2PTZ5crtRdvbS-NwucgYVYQRIWDqOgg6rNDp-YvuU7DfTZYAVV01rYoaFOoHOM3SU7-uO2UbbrV25N7A9Zr6iWesQ393rws6nP_IX0A_U3G6g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9xADLYKrQQcaMtDLKXtHHrhEMhOZvI4IrQIVIgQLBK3yJnxIKRqU4Usvx_PJAtUFQduOTiZyF9sj-P5bIBfeYp1jlhHiYopUtbZqECMo7rGVHHE5U12HYZNZGWZ394WlwNZPXBhiCgcPqMDfxlq-bYxc_-r7NDnKhzO0iX4qJWScU_Xei4a-Gf3jpdtmBdZVCXj4nBaXnMuKPVBon0hrPgnCoWxKv_54hBgTj6_89W-wPqwkxRHPfRf4QPNNmDtVX_BTeiufOcBr_rIj-gwZMU1u10xadumFUfPTTlF4wSKnovL2KJlwYumZodRUieOy1L4kWl_xNU8DDgS97OFuG-CKSb2jsTAOGjaLbg5mUyPT6NhzEJkpMq6CF3GZmhy6VKTamJ8MlVYbTKXjnGcx5hL5MhObPr1WDvnLLIbRUMY15lUlGzD8qyZ0Q6IItEm4QRQJgqVVAaVGWNKkrLUOJPYEewv1F797btpVCELiYuKIao8RNUA0Qi2vJpf5AYNj2BvAVQ12NtDxdvCzHN-td5947afsHI6vTivzs_K399g1a_Un-Pbg-WundN3-GQeu_uH9kf4qJ4AgM3KMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiation-Induced+Soft+Error+Assessment+of+a+Multithreaded+MobileNet+CNN+Model+Running+in+a+Multicore+Edge+Processor&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Gava%2C+Jonas&rft.au=Sherjil%2C+Areeb&rft.au=Laurini%2C+Luiz+H&rft.au=Atukpor%2C+Emmanuel&rft.date=2025-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9499&rft.eissn=1558-1578&rft.volume=72&rft.issue=11&rft.spage=2821&rft.epage=2829&rft_id=info:doi/10.1109%2FTNS.2025.3585859&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon