Learning Deformable Linear Object Dynamics From a Single Trajectory

The dynamic manipulation of deformable objects poses a significant challenge in robotics. While model-based approaches for controlling such objects hold significant potential, their effectiveness hinges on the availability of an accurate and computationally efficient dynamics model. This work focuse...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE robotics and automation letters Ročník 10; číslo 7; s. 7635 - 7642
Hlavní autori: Mamedov, Shamil, Geist, A. Rene, Viljoen, Ruan, Trimpe, Sebastian, Swevers, Jan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2377-3766, 2377-3766
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The dynamic manipulation of deformable objects poses a significant challenge in robotics. While model-based approaches for controlling such objects hold significant potential, their effectiveness hinges on the availability of an accurate and computationally efficient dynamics model. This work focuses on sample-efficient learning of models to capture the dynamic behavior of deformable linear objects (DLOs). Inspired by the pseudo-rigid body method, we present a physics-informed neural ODE that approximates a DLO as a serial chain of rigid bodies interconnected by passive elastic joints. However, unlike traditional uniform spatial discretization and linear spring-damper joints, our approach involves learning-based discretization and nonlinear elastic joints that characterize interaction forces via a neural network. Through real-world and simulation experiments involving DLOs with markedly different physical properties, we demonstrate the model's ability to accurately predict DLO motion.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2025.3577421