Learning-Based Constellation Design for Uplink Bi-Static Integrated Sensing and Communication
This paper proposes an end-to-end deep learning based constellation design for integrated sensing and communication (ISAC) for the uplink of orthogonal frequency division multiplexing (OFDM) systems. Utilizing an auto-encoder architecture, the system designs and optimizes constellation mappings to b...
Uloženo v:
| Vydáno v: | IEEE transactions on vehicular technology Ročník 74; číslo 8; s. 13219 - 13224 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9545, 1939-9359 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper proposes an end-to-end deep learning based constellation design for integrated sensing and communication (ISAC) for the uplink of orthogonal frequency division multiplexing (OFDM) systems. Utilizing an auto-encoder architecture, the system designs and optimizes constellation mappings to balance the trade-off between communication and sensing performance under a bi-static scenario where receiver has no knowledge about transmitted signals. The constellation design is trained to adapt to specific channel conditions, offering flexible control over the communication-sensing performances by adjusting a radar weighting factor. Simulation results show that this design outperforms conventional constellation formats such as 64-QAM and 64-PSK in symbol error rate (SER), while outperforming the 64-QAM in sensing error. Furthermore, the proposed constellation design demonstrates robust performance even under channel state information (CSI) errors of up to 1.5%. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9545 1939-9359 |
| DOI: | 10.1109/TVT.2025.3554439 |