Learning-Based Constellation Design for Uplink Bi-Static Integrated Sensing and Communication
This paper proposes an end-to-end deep learning based constellation design for integrated sensing and communication (ISAC) for the uplink of orthogonal frequency division multiplexing (OFDM) systems. Utilizing an auto-encoder architecture, the system designs and optimizes constellation mappings to b...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on vehicular technology Jg. 74; H. 8; S. 13219 - 13224 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9545, 1939-9359 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper proposes an end-to-end deep learning based constellation design for integrated sensing and communication (ISAC) for the uplink of orthogonal frequency division multiplexing (OFDM) systems. Utilizing an auto-encoder architecture, the system designs and optimizes constellation mappings to balance the trade-off between communication and sensing performance under a bi-static scenario where receiver has no knowledge about transmitted signals. The constellation design is trained to adapt to specific channel conditions, offering flexible control over the communication-sensing performances by adjusting a radar weighting factor. Simulation results show that this design outperforms conventional constellation formats such as 64-QAM and 64-PSK in symbol error rate (SER), while outperforming the 64-QAM in sensing error. Furthermore, the proposed constellation design demonstrates robust performance even under channel state information (CSI) errors of up to 1.5%. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9545 1939-9359 |
| DOI: | 10.1109/TVT.2025.3554439 |