Learning-Based Constellation Design for Uplink Bi-Static Integrated Sensing and Communication

This paper proposes an end-to-end deep learning based constellation design for integrated sensing and communication (ISAC) for the uplink of orthogonal frequency division multiplexing (OFDM) systems. Utilizing an auto-encoder architecture, the system designs and optimizes constellation mappings to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on vehicular technology Jg. 74; H. 8; S. 13219 - 13224
Hauptverfasser: Hu, Jiaming, Han, Kawon, Jiang, Lai, Meng, Kaitao, Liu, Fan, Masouros, Christos
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9545, 1939-9359
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an end-to-end deep learning based constellation design for integrated sensing and communication (ISAC) for the uplink of orthogonal frequency division multiplexing (OFDM) systems. Utilizing an auto-encoder architecture, the system designs and optimizes constellation mappings to balance the trade-off between communication and sensing performance under a bi-static scenario where receiver has no knowledge about transmitted signals. The constellation design is trained to adapt to specific channel conditions, offering flexible control over the communication-sensing performances by adjusting a radar weighting factor. Simulation results show that this design outperforms conventional constellation formats such as 64-QAM and 64-PSK in symbol error rate (SER), while outperforming the 64-QAM in sensing error. Furthermore, the proposed constellation design demonstrates robust performance even under channel state information (CSI) errors of up to 1.5%.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2025.3554439