Learning-Based Near-Orthogonal Superposition Code for MIMO Short Message Transmission

Massive machine type communication (mMTC) has attracted new coding schemes optimized for reliable short message transmission. In this paper, a novel deep learning-based near-orthogonal superposition (NOS) coding scheme is proposed to transmit short messages in multiple-input multiple-output (MIMO) c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on communications Ročník 71; číslo 9; s. 1
Hlavní autoři: Bian, Chenghong, Hsu, Chin-Wei, Lee, Changwoo, Kim, Hun-Seok
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0090-6778, 1558-0857
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Massive machine type communication (mMTC) has attracted new coding schemes optimized for reliable short message transmission. In this paper, a novel deep learning-based near-orthogonal superposition (NOS) coding scheme is proposed to transmit short messages in multiple-input multiple-output (MIMO) channels for mMTC applications. In the proposed MIMO-NOS scheme, a neural network-based encoder is optimized via end-to-end learning with a corresponding neural network-based detector/decoder in a superposition-based auto-encoder framework including a MIMO channel. The proposed MIMO-NOS encoder spreads the information bits to multiple near-orthogonal high dimensional vectors to be combined (superimposed) into a single vector and reshaped for the space-time transmission. For the receiver, we propose a novel looped K -best tree-search algorithm with cyclic redundancy check (CRC) assistance to enhance the error correcting ability in the block-fading MIMO channel. For a comprehensive understanding of the proposed MIMO-NOS scheme, we further quantify the gain from individual components/modules in the framework, and analyze the decoding complexity measured by the floating point operations (FLOPs). Simulation results show the proposed MIMO-NOS scheme outperforms maximum likelihood (ML) MIMO detection combined with a polar code with CRC-assisted list decoding by 1 - 2 dB in various MIMO systems for short (32 - 64 bit) message transmission.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2023.3274158