Spatio-Temporal Metric-Semantic Mapping for Persistent Orchard Monitoring: Method and Dataset
Monitoring orchards at the individual tree or fruit level throughout the growth season is crucial for plant phenotyping and horticultural resource optimization, such as chemical use and yield estimation. We present a 4D spatio-temporal metric-semantic mapping system that integrates multi-session mea...
Uloženo v:
| Vydáno v: | IEEE robotics and automation letters Ročník 10; číslo 8; s. 8610 - 8617 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2377-3766, 2377-3766 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Monitoring orchards at the individual tree or fruit level throughout the growth season is crucial for plant phenotyping and horticultural resource optimization, such as chemical use and yield estimation. We present a 4D spatio-temporal metric-semantic mapping system that integrates multi-session measurements to track fruit growth over time. Our approach combines a LiDAR-RGB fusion module for 3D fruit localization with a 4D fruit association method leveraging positional, visual, and topology information for improved data association precision. Evaluated on real orchard data, our method achieves a 96.9% fruit counting accuracy for 1,790 apples across 60 trees, a mean fruit size estimation error of 1.1 cm, and a 23.7% improvement in 4D data association precision over baselines. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2377-3766 2377-3766 |
| DOI: | 10.1109/LRA.2025.3588037 |